1.

Record Nr.

UNINA9910736002203321

Autore

Lentner Simon

Titolo

Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I / / by Simon Lentner, Svea Nora Mierach, Christoph Schweigert, Yorck Sommerhäuser

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023

ISBN

981-19-4645-0

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (76 pages)

Collana

SpringerBriefs in Mathematical Physics, , 2197-1765 ; ; 44

Altri autori (Persone)

MierachSvea Nora

SchweigertChristoph

SommerhäuserYorck

Disciplina

530.15423

Soggetti

Mathematical physics

Algebraic topology

Algebra, Homological

Mathematical Physics

Algebraic Topology

Category Theory, Homological Algebra

Àlgebra homològica

Àlgebra tensorial

Aplicacions (Matemàtica)

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Mapping class groups -- Tensor categories -- Derived functors.

Sommario/riassunto

The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces of chiral conformal blocks, which arise from the homomorphism functors in the category, but also act on the spaces that arise from the corresponding derived functors. It is natural to ask whether this is indeed the case. The book carefully approaches this question by first providing a detailed introduction to surfaces and their mapping class



groups. Thereafter, it explains how representations of these groups are constructed in topological field theory, using an approach via nets and ribbon graphs. These tools are then used to show that the mapping class groups indeed act on the so-called derived block spaces. Toward the end, the book explains the relation to Hochschild cohomology of Hopf algebras and the modular group.