|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910735565203321 |
|
|
Autore |
Jannot Yves |
|
|
Titolo |
Heat transfer : conduction and convection / / Yves Jannot, Christian Moyne, Alain Degiovanni |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, England ; Hoboken, NJ : , : ISTE Ltd : , : John Wiley & Sons, Inc., , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-394-22810-4 |
1-394-22808-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (330 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Nomenclature -- Chapter 1. Introduction to Heat Transfer -- 1.1. Introduction -- 1.2. Definitions -- 1.2.1. Temperature field -- 1.2.2. Temperature gradient -- 1.2.3. Heat flux -- 1.3. Formulation of a heat transfer problem -- 1.3.1. Energy balance -- 1.3.2. Expression of energy flows -- Chapter 2. Steady-State Conduction Heat Transfer -- 2.1. The heat equation -- 2.2. Unidirectional transfer -- 2.2.1. Simple wall -- 2.2.2. Multilayer wall -- 2.2.3. Composite wall -- 2.2.4. Long hollow cylinder (tube) -- 2.2.5. Multilayer hollow cylinder -- 2.2.6. General case -- 2.2.7. Consideration of radiative transfer -- 2.3. Multi-directional transfer -- 2.3.1. Method of separation of variables -- 2.3.2. Shape coefficient method -- 2.3.3. Numerical methods -- 2.4. The fins -- 2.4.1. The bar equation -- 2.4.2. Flow extracted by a fin -- 2.4.3. Efficiency of a fin -- 2.4.4. Electrical analogy -- 2.4.5. Choice of fins -- 2.5. Corrected exercises -- 2.5.1. Heat supply in an air-conditioned room -- 2.5.2. Heat losses from an oil pipeline -- 2.5.3. Critical insulation thickness -- 2.5.4. Hot wire anemometry -- 2.5.5. Calculation of a fin -- 2.5.6. Temperature of teapot handles -- 2.5.7. Thermal resistance of a finned tube -- 2.5.8. Heat input in a cold room -- 2.5.9. Pipe insulation -- 2.5.10. Heat losses from a pipe -- 2.5.11. Effect of a fin and radiation on a thermocouple -- 2.5.12. Internal heat |
|
|
|
|
|
|
|
|
|
|
transfer in a pipe -- 2.5.13. Buried pipes -- 2.5.14. Measurement of the thermal conductivity of a rock -- Chapter 3. Heat Transfer by Conduction in Transient Regime -- 3.1. Unidirectional conduction in transient regime without change of state -- 3.1.1. Uniform temperature medium -- 3.1.2. Semi-infinite medium -- 3.1.3. Unidirectional transfer in limited media: plate, cylinder, sphere. |
3.1.4. Complex systems: quadrupole method -- 3.1.5. Established periodic state -- 3.1.6. Systems with temperature-dependent thermal properties -- 3.2. Multidirectional conduction in transient regime -- 3.2.1. Von Neuman's theorem -- 3.2.2. Integral transformations and separation of variables -- 3.3. Corrected exercises -- 3.3.1. Age of the Earth: "Kelvin ambiguity" (1864) -- 3.3.2. Periodic variation of temperature in the ground -- 3.3.3. Measurement of thermal diffusivity by sinusoidal excitation -- 3.3.4. Freezing a lake -- 3.3.5. Freezing water pipes in dry ground -- 3.3.6. Freezing water pipes in wet ground -- 3.3.7. Firewall -- 3.3.8. Fire from a wooden beam -- 3.3.9. Flash method -- 3.3.10. Heat treatment of landing gear -- 3.3.11. Heat treatment of a carbon block -- 3.3.12. Heat treatment of a thin layer -- 3.3.13. Quenching of a ball -- 3.3.14. Brake pad heating -- 3.3.15. Hot plate method -- 3.3.16. Measurement of the thermal diffusivity of a thin plate -- 3.3.17. Regular regime method -- 3.3.18. Hot wire modeling -- 3.3.19. Intermittent heating of a chalet -- 3.3.20. Heat loss through the floor of a house -- 3.3.21. Periodic temperature variation in an unconditioned room -- 3.3.22. Periodic flow variation in an air-conditioned room -- Chapter 4. Convective Heat Transfer -- 4.1. Reminders on dimensional analysis -- 4.1.1. Fundamental dimensions -- 4.1.2. Principle of the method -- 4.1.3. Application example -- 4.1.4. Advantages of using reduced quantities -- 4.2. Convection without phase change -- 4.2.1. Generalities and definitions -- 4.2.2. Expression of heat flow rate -- 4.2.3. Calculation of heat flow rate in forced convection -- 4.2.4. Calculation of heat flow rate in natural convection -- 4.3. Convection with phase change -- 4.3.1. Condensation -- 4.3.2. Boiling -- 4.4. Corrected exercises. |
4.4.1. Forced convection in and around a tube -- 4.4.2. Water flow in a heating tube -- 4.4.3. Air cooling in a duct -- 4.4.4. Permeable-dynamic insulation of a house -- 4.4.5. Convection in a chimney -- 4.4.6. Modeling natural convection in double glazing -- 4.4.7. Calculation of exchanges by convection in double glazing -- 4.4.8. Study of an electric kettle -- Appendices -- References -- Index -- Summary of Volume 2 -- EULA. |
|
|
|
|
|
| |