1.

Record Nr.

UNINA9910734835003321

Autore

Kateri Maria

Titolo

Trends and Challenges in Categorical Data Analysis : Statistical Modelling and Interpretation / / edited by Maria Kateri, Irini Moustaki

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

9783031311864

3031311868

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (323 pages)

Collana

Statistics for Social and Behavioral Sciences, , 2199-7365

Altri autori (Persone)

MoustakiIrini

Disciplina

519.535

Soggetti

Statistics

Biometry

Psychometrics

Epidemiology

Statistical Theory and Methods

Biostatistics

Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences

Anàlisi multivariable

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Preface -- Chapter 1. Carolyn J. Anderson, Maria Kateri and Irini Moustaki: Log-Linear and Log-Multiplicative Association Models for Categorical Data -- Chapter 2. Peter W. F. Smith: Graphical Models for Categorical Data -- Chapter 3. Tam´as Rudas and Wicher Bergsma: Marginal Models: an Overview -- Chapter 4. Jonathan J Forster and Mark E Grigsby: Bayesian Inference for Multivariate Categorical Data -- Chapter 5. Alan Agresti, Claudia Tarantola and Roberta Varriale: Simple Ways to Interpret Effects in Modeling Binary Data -- Chapter 6. Ioannis Kosmidis: Mean and median bias reduction: A concise review and application to adjacent-categories logit models -- Chapter 7. Jan Gertheiss and Gerhard Tutz: Regularization and Predictor Selection for Ordinal and Categorical Data -- Chapter 8. Mirko Armillotta,



Alessandra Luati and Monia Lupparelli: An overview of ARMA-like models for count and binary data -- Chapter 9. Francesco Valentini, Claudia Pigini, and Francesco Bartolucci: Advances in maximum likelihood estimation of fixed-effects binary panel data models.

Sommario/riassunto

This book provides a selection of modern and sophisticated methodologies for the analysis of large and complex univariate and multivariate categorical data. It gives an overview of a substantive and broad collection of topics in the analysis of categorical data, including association, marginal and graphical models, time series and fixed effects models, as well as modern methods of estimation such as regularization, Bayesian estimation and bias reduction methods, along with new simple measures for model interpretability. Methodological innovations and developments are illustrated and explained through real-world applications, together with useful R packages, allowing readers to replicate most of the analyses using the provided code. The applications span a variety of disciplines, including education, psychology, health, economics, and social sciences.