1.

Record Nr.

UNIORUON00305826

Autore

CAPRA, Fritjof

Titolo

Il Tao della fisica / Fritjof Capra

Pubbl/distr/stampa

Milano, : Adelphi, 2007

ISBN

978-88-459-0689-3

Edizione

[20. ed]

Descrizione fisica

381 p. ; 20 cm

Disciplina

530.1

Soggetti

MISTICISMO

FISICA E FILOSOFIA

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910734092203321

Autore

Eftimov Tome

Titolo

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms / / by Tome Eftimov, Peter Korošec

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

3-030-96917-7

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (141 pages)

Collana

Natural Computing Series, , 2627-6461

Disciplina

519.3

519.6

Soggetti

Artificial intelligence

Stochastic analysis

Statistics

Artificial Intelligence

Stochastic Analysis

Optimització matemàtica

Intel·ligència artificial

Llibres electrònics



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Metaheuristic Stochastic Optimization -- Benchmarking Theory -- Introduction to Statistical Analysis -- Approaches to Statistical Comparisons -- Deep Statistical Comparison in Single-Objective Optimization -- Deep Statistical Comparison in Multiobjective Optimization -- DSCTool: A Web-Service-Based E-Learning Tool -- Summary.

Sommario/riassunto

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios. The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts: Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4. Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7. Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.