1.

Record Nr.

UNINA9910728930903321

Autore

Chung Eric

Titolo

Multiscale Model Reduction : Multiscale Finite Element Methods and Their Generalizations / / by Eric Chung, Yalchin Efendiev, Thomas Y. Hou

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

3-031-20409-3

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (499 pages)

Collana

Applied Mathematical Sciences, , 2196-968X ; ; 212

Altri autori (Persone)

EfendievYalchin

HouThomas Y

Disciplina

511.8

Soggetti

Numerical analysis

Mathematics—Data processing

Mathematical physics

Numerical Analysis

Computational Science and Engineering

Theoretical, Mathematical and Computational Physics

Modelització multiescala

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- Homogenization and Numerical Homogenization of Linear Equations -- Local Model Reduction: Introduction to Multiscale Finite Element Methods -- Generalized Multiscale Finite Element Methods: Main Concepts and Overview -- Adaptive Strategies -- Selected Global Formulations for GMsFEM and Energy Stable Oversampling -- GMsFEM Using Sparsity in the Snapshot Spaces -- Space-time GMsFEM -- Constraint Energy Minimizing Concepts -- Non-local Multicontinua Upscaling -- Space-time GMsFEM -- Multiscale Methods for Perforated Domains -- Multiscale Stabilization -- GMsFEM for Selected Applications -- Homogenization and Numerical Homogenization of Nonlinear Equations -- GMsFEM for Nonlinear Problems -- Nonlinear Non-local Multicontinua Upscaling -- Global-local Multiscale Model Reduction Using GMsFEM -- Multiscale Methods



in Temporal Splitting. Efficient Implicit-explicit Methods for Multiscale Problems -- References -- Index.

Sommario/riassunto

This monograph is devoted to the study of multiscale model reduction methods from the point of view of multiscale finite element methods. Multiscale numerical methods have become popular tools for modeling processes with multiple scales. These methods allow reducing the degrees of freedom based on local offline computations. Moreover, these methods allow deriving rigorous macroscopic equations for multiscale problems without scale separation and high contrast. Multiscale methods are also used to design efficient solvers. This book offers a combination of analytical and numerical methods designed for solving multiscale problems. The book mostly focuses on methods that are based on multiscale finite element methods. Both applications and theoretical developments in this field are presented. The book is suitable for graduate students and researchers, who are interested in this topic.