1.

Record Nr.

UNINA9910717418803321

Autore

Avramidi Ivan G. <1957->

Titolo

Heat kernel on lie groups and maximally symmetric spaces / / Ivan G. Avramidi

Pubbl/distr/stampa

Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]

©2023

ISBN

9783031274510

9783031274503

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (197 pages)

Collana

Frontiers in Mathematics, , 1660-8054

Disciplina

515.353

Soggetti

Heat equation

Kernel functions

Lie groups

Symmetric spaces

Equació de la calor

Funcions de Kernel

Grups de Lie

Espais simètrics

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Part I. Manifolds -- Chapter. 1. Introduction -- Chapter. 2. Geometry of Simple Groups -- Chapter. 3. Geometry of SU(2) -- Chapter. 4. Maximally Symmetric Spaces -- Chapter. 5. Three-dimensional Maximally Symmetric Spaces -- Part II: Heat Kernel -- Chapter. 6. Scalar Heat Kernel -- Chapter. 7. Spinor Heat Kernel -- Chapter. 8. Heat Kernel in Two Dimensions -- Chapter. 9. Heat Kernel on S3 and H3 -- Chapter. 10. Algebraic Method for the Heat Kernel -- Appendix A -- References -- Index.

Sommario/riassunto

This monograph studies the heat kernel for the spin-tensor Laplacians on Lie groups and maximally symmetric spaces. It introduces many original ideas, methods, and tools developed by the author and provides a list of all known exact results in explicit form – and derives



them – for the heat kernel on spheres and hyperbolic spaces. Part I considers the geometry of simple Lie groups and maximally symmetric spaces in detail, and Part II discusses the calculation of the heat kernel for scalar, spinor, and generic Laplacians on spheres and hyperbolic spaces in various dimensions. This text will be a valuable resource for researchers and graduate students working in various areas of mathematics – such as global analysis, spectral geometry, stochastic processes, and financial mathematics – as well in areas of mathematical and theoretical physics – including quantum field theory, quantum gravity, string theory, and statistical physics.