|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910717411903321 |
|
|
Autore |
Scott Jennifer |
|
|
Titolo |
Algorithms for Sparse Linear Systems / / by Jennifer Scott, Miroslav Tůma |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2023.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xix, 242 pages) : illustrations (some color) |
|
|
|
|
|
|
Collana |
|
Nečas Center Series, , 2523-3351 |
|
|
|
|
|
|
Classificazione |
|
COM014000MAT002050MAT021000 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Numerical analysis |
Algebras, Linear |
Mathematics - Data processing |
Numerical Analysis |
Linear Algebra |
Computational Science and Engineering |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
An introduction to sparse matrices -- Sparse matrices and their graphs -- Introduction to matrix factorizations -- Sparse Cholesky sovler: The symbolic phase -- Sparse Cholesky solver: The factorization phase -- Sparse LU factorizations -- Stability, ill-conditioning and symmetric indefinite factorizations -- Sparse matrix ordering algorithms -- Algebraic preconditioning and approximate factorizations -- Incomplete factorizations -- Sparse approximate inverse preconditioners. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Large sparse linear systems of equations are ubiquitous in science, engineering and beyond. This open access monograph focuses on factorization algorithms for solving such systems. It presents classical techniques for complete factorizations that are used in sparse direct methods and discusses the computation of approximate direct and inverse factorizations that are key to constructing general-purpose algebraic preconditioners for iterative solvers. A unified framework is used that emphasizes the underlying sparsity structures and highlights the importance of understanding sparse direct methods when |
|
|
|
|