| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996499861103316 |
|
|
Titolo |
X-ray imaging of the soil porous architecture / / Sacha Jon Mooney [and three others], editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (232 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Soil mechanics |
Imaging systems in geology |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Foreword -- Acknowledgements -- Contents -- Chapter 1: 40 Years of X-ray CT in Soil: Historical Context -- 1.1 Introduction -- References -- Chapter 2: Practicalities of X-ray CT Scanning for the Soil Sciences -- 2.1 Introduction -- 2.2 Manufacturers of μCT Systems -- 2.3 X-ray Sources -- 2.4 Detectors -- 2.5 Obtaining High-Resolution Images -- 2.6 Image Quality -- 2.7 Sample Manipulator -- 2.8 Configurations -- 2.8.1 Cabinet or Enclosure? -- 2.8.2 CT Scanning Methods -- 2.8.3 Software -- 2.9 Overcoming CT Artefacts -- 2.10 Evaluating a Potential X-Ray CT System -- References -- Chapter 3: Soil Sampling and Preparation for X-ray Imaging -- 3.1 Introduction -- 3.2 The Main Steps for Successful Sampling -- 3.2.1 What is the Aim of the Sampling -- 3.2.2 Where to Sample -- 3.2.3 Determining Sample Size -- 3.2.4 How to Orientate the Sample -- 3.2.5 Number of Samples -- 3.2.6 When to Sample -- 3.2.7 How to Sample -- 3.2.8 How to Document, Transport, and Store Samples -- 3.3 Representative Elementary Volume -- 3.4 Geospatial Sampling -- 3.5 Sample Preparation -- 3.5.1 Preliminary Laboratory Analysis -- 3.6 Conclusions -- References -- Chapter 4: Optimising the Scanning Process: Demystifying the Dark Art of Optimising Microtomography Scan Settings -- 4.1 Introduction -- 4.2 Preparing the Sample -- 4.3 Optimising the Image -- 4.3.1 Positioning the Sample in the Scanner -- 4.3.2 X-ray Voltage and Current -- 4.3.3 Detector Settings -- 4.4 |
|
|
|
|
|
|
|
|
|
Acquisition Modes -- 4.5 Conclusions -- References -- Chapter 5: X-ray Computed Tomography Image Processing & -- Segmentation: A Case Study Applying Machine Learning and Deep Learning... -- 5.1 Image Processing: Cropping and Filtering -- 5.2 Image Segmentation -- 5.2.1 Global Segmentation -- 5.2.2 Local Segmentation -- 5.2.3 Machine Learning-Based Segmentation as a Solution to New X-ray CT Imaging Challenges. |
5.3 An X-ray CT Image Segmentation Protocol Based on Machine Learning and Deep Learning Strategies: A Case Study -- 5.3.1 X-ray CT Image Acquisition and Preparation for the Machine Learning Pipeline -- 5.3.2 Machine Learning Pipeline -- 5.3.3 Deep Learning Pipeline -- 5.4 Conclusions -- References -- Chapter 6: Quantification of Soil Porous Architecture -- 6.1 Introduction -- 6.2 Quantification of Pore Structure -- 6.2.1 Metrics Based on Binary Image -- 6.2.2 Metrics Based on Connected Components -- 6.2.3 Metrics Based on Distance -- 6.2.4 Metrics Based on Pore Size -- 6.2.5 Case Study on Tillage-Induced Pore Structure -- 6.3 Scale Issues in Pore Structure Characterization -- 6.4 Correlative Imaging -- 6.4.1 Practical Issues -- 6.4.2 Software Implementations -- 6.5 Conclusions -- References -- Chapter 7: X-ray Computed Tomography for Studying Solute Transport in Soils -- 7.1 Introduction -- 7.2 Methods to Study Solute and Water Transport in Soils -- 7.3 CT Scanning for Estimating Solute and Water Transport -- 7.4 Limitations of CT Techniques for Estimating Water and Solute Transport through Soil -- 7.5 Conclusions -- References -- Chapter 8: X-ray Imaging of Mechanical Processes in Soil -- 8.1 Introduction -- 8.2 X-ray CT in Relation to Tillage -- 8.2.1 Visualisation and Evaluation of Seedling Growing Conditions Produced by Tillage -- 8.2.2 Macropore Structure and Functioning Affected by Tillage/no-Tillage -- 8.2.3 Using X-Ray CT to Predict Soil Fragmentation from Tillage -- 8.3 Soil Compaction Due to Traffic -- 8.3.1 Identification of the Long-term Effects of Soil Compaction -- 8.3.2 Segmentation and Compaction -- 8.3.3 From Soil Displacement to Stress Transmission -- 8.4 Visualisation of Soil Deformation -- 8.5 Conclusions -- References -- Chapter 9: X-ray Imaging of Root-Soil Interactions -- 9.1 Introduction -- 9.2 General Overview and Drawbacks. |
9.3 X-ray Dose -- 9.4 Opportunity In Situ over Time -- 9.5 Root Segmentation -- 9.6 Root System Architecture and Root Traits -- 9.7 Mutual Interaction of Roots and Soil Structure -- 9.8 Compacted Soils -- 9.8.1 Compaction of the Rhizosphere -- 9.8.2 Root-Soil Contact -- 9.9 Interaction with (Micro)Organisms -- 9.10 The Impact of Nutrition on Root Growth -- 9.11 Image-Based Modelling -- 9.11.1 Explicit Models -- 9.11.2 Root System Architecture (RSA) as Input for Models -- 9.12 Conclusions -- References -- Chapter 10: X-ray Computed Tomography Imaging & -- Soil Biology -- 10.1 Introduction -- 10.2 Soil Meso-Fauna and X-ray CT -- 10.3 Soil Microorganisms and X-ray CT -- 10.4 Indirect Use of CT to Observe the Outcomes of Microbial Activities -- 10.5 Effect of CT Scanning on Soil Organisms -- 10.6 CT and Soil Organic Matter Visualization -- 10.7 Conclusions -- References -- Chapter 11: Integrating X-ray CT Data into Models -- 11.1 Introduction -- 11.2 Direct Integration of X-ray CT Data-Derived Soil Phases into Image-Based Models -- 11.2.1 Integration of X-ray CT Data of Pore Space Geometry -- 11.2.2 Integration of X-ray CT Data of Air-Water Distribution -- 11.2.3 Integration of X-ray CT Data of Solid Organic Matter Distribution -- 11.2.4 Integration of X-ray CT Data of Roots -- 11.3 Overview of Image-Based Modelling Works -- 11.3.1 Modelling of Soil Physical Processes -- 11.3.1.1 Saturated Water Conditions -- 11.3.1.2 Unsaturated Water Conditions -- 11.3.2 Modelling of Biological Processes -- 11.3.2.1 Modelling of Microbial |
|
|
|
|
|
|
|
|
|
|
|
Activity -- 11.3.2.2 Modelling of Root Processes -- 11.4 Conclusions -- References -- Chapter 12: Future Perspectives -- 12.1 Introduction -- 12.2 Conclusions -- References. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910716981603321 |
|
|
Autore |
Hammarstrom Jane Marie |
|
|
Titolo |
Porphyry copper assessment of East and Southeast Asia : Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan / / by Jane M. Hammarstrom [and twelve others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Reston, Virginia : , : U.S. Department of the Interior, U.S. Geological Survey, , 2014 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xiii, 243 pages) : color illustrations, color maps |
|
|
|
|
|
|
Collana |
|
Scientific investigations report ; ; 2010-5090-P |
|
|
|
|
|
|
Soggetti |
|
Copper - Philippines |
Copper - Taiwan |
Copper - Korea (South) |
Copper - Japan |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Prepared in cooperation with the Coordinating Committee for Geoscience Programmes in East and Southeast Asia." |
Includes GIS data. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNICASPUV0257895 |
|
|
Titolo |
2 / Eduard Meyer |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Halle, Saale, : Verlag von Max Niemeyer, 1924 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |