1.

Record Nr.

UNINA9910716708703321

Titolo

Introduction to flow of funds

Pubbl/distr/stampa

[Washington, D.C.] : , : Board of Governors of the Federal Reserve System, , 1980

Descrizione fisica

1 online resource (53, 10 pages) : illustrations

Disciplina

339.373

Soggetti

Flow of funds - United States - Accounting

Flow of funds - Accounting

United States

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"June 1980."

Publication previously considered out of scope of the Federal Depository Library Program (FDLP). No FDLP item number has been assigned.

Nota di bibliografia

Includes bibliographical references (pages 52-53).



2.

Record Nr.

UNINA9910953814103321

Autore

Lundbom Jack R

Titolo

Jeremiah : a study in ancient Hebrew rhetoric / / Jack R. Lundbom

Pubbl/distr/stampa

Winona Lake, Ind., : Eisenbrauns, 1997

ISBN

9781575065069

1575065061

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (259 p.)

Disciplina

224/.2066

Soggetti

HISTORY / Ancient / General

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Originally presented as the author's thesis--Graduate Theological Union, Berkeley, 1973.

Nota di bibliografia

Includes bibliographical references (p. 165-202) and indexes.

Nota di contenuto

Frontmatter -- Contents -- Preface -- Preface to the Second Edition -- Abbreviations -- Rhetorical Criticism -- Chapter 1: Introduction -- Chapter 2: Inclusio -- Chapter 3: Chiasmus -- Chapter 4: Conclusion -- Appendix: Christian Schoettgen's Exergasia Sacra -- Bibliography -- Index of Authors -- Index of Scripture

Sommario/riassunto

Completely retypeset including a new chapter on the history of rhetorical criticism in North America and a fully updated bibliography, Jack Lundbom's landmark contribution to rhetorical criticism is here reissued by Eisenbrauns. This book serves a dual purpose as both an introduction to Jeremiah and an introduction (with illustration) to rhetorical criticism of the Hebrew Bible.



3.

Record Nr.

UNINA9910817438703321

Autore

Pompe Wolfgang

Titolo

Bio-nanomaterials : designing materials inspired by nature / / Wolfgang Pompe ...[et al.]

Pubbl/distr/stampa

Weinheim, Germany, : Wiley-Vch, c2013

ISBN

9783527655281

352765528X

9783527655267

3527655263

9783527655298

3527655298

Edizione

[1st ed.]

Descrizione fisica

1 online resource (472 p.)

Altri autori (Persone)

PompeWolfgang

Disciplina

620.117

Soggetti

Nanostructured materials

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes biographical references and index.

Nota di contenuto

Bio-Nanomaterials: Designing materials inspired by nature; Contents; Preface; 1 Molecular Units; 1.1 Case Studies; 1.1.1 Nucleic Acids; 1.1.2 Proteins; 1.1.3 Carbohydrates; 1.1.4 Lipids; 1.2 Basic Principles; 1.2.1 The Persistence Lengths of Biopolymer Chains; 1.2.2 Equilibrium Shape of a Semiflexible Polymer Chain; 1.2.3 The Load-Extension Diagram of a Semiflexible Polymer Chain; 1.2.4 Cooperativity; 1.2.5 Protein Folding; 1.2.6 DNA Melting Transition; 1.2.7 Biocatalytic Reactions; 1.3 Bioengineering; 1.3.1 Biointerfacing; 1.3.2 DNA-Based Nanotechnology

1.3.2.1 Biomolecular Templates for Submicrometer Electronic Circuitries 1.3.2.2 DNA-Based Nanoprobes; 1.3.3 Protein-Based Nanotechnology; References; 2 Molecular Recognition; 2.1 Case Study; 2.2 Basic Principles; 2.2.1 Complementary Interaction between Proteins and Ligands; 2.2.2 Cooperative Protein-Ligand Interaction; 2.2.3 The Enzyme-Linked Immunosorbent Assay; 2.3 Engineering of Biomolecular Recognition Systems; 2.3.1 Engineering of Protein-Based Bioaffine Materials; 2.3.1.1 Interfacing Mechanisms of Proteins via Bioaffinity; 2.3.2 Engineering of Sensing Biofunctionalized Materials

2.3.2.1 Design Principles of Biosensors 2.3.2.2 Integration of Sensing



Biological Elements and Transducer Units; References; 3 Cell Adhesion; 3.1 Case Study; 3.2 Basic Principles; 3.2.1 The Cellular Mechanotransduction System; 3.2.2 Mechanical Impact of the ECM on Cell Development; 3.2.3 Influence of the Microenvironment Topology on the Cell Spreading and Development; 3.3 Bioengineering; 3.3.1 The Basic Approach and Goals; 3.3.2 Tailored Surfaces for In Vitro Culturing of Cells; 3.3.2.1 A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces

3.3.2.2 Regulation of Cell Fate by Nanostructured Surfaces 3.3.3 Three-Dimensional Scaffolds for Tissue Engineering; 3.3.4 Switchable Substrates and Matrices; References; 4 Whole-Cell Sensor Structures; 4.1 Case Studies; 4.2 Basic Principles; 4.3 Bioengineering; References; 5 Biohybrid Silica-Based Materials; 5.1 Case Studies; 5.2 Basic Principles; 5.2.1 Preparation of Silica-Based Xerogels; 5.2.2 Biological Properties of Silica-Based Biocers; 5.3 Bioengineering; 5.3.1 Bioactive Sol-Gel Coatings and Composites; 5.3.2 Biocatalytic Sol-Gel Coatings; 5.3.3 Bioremediation

5.3.4 Cell-Based Bioreactors 5.3.5 Silica-Based Controlled Release Structures; 5.3.6 Patterned Structures; 5.4 Silicified Geological Biomaterials; References; 6 Biomineralization; 6.1 Case Studies; 6.2 Basic Principles; 6.2.1 Precipitation; 6.2.1.1 Thermodynamics of Mineralization; 6.2.1.2 Kinetics of Mineralization; 6.2.2 Phenomenology of Biomineralization; 6.2.3 Basic Mechanisms in Biomineralization; 6.2.4 Biologically Mediated Mineralization: the Competition between Inhibition and Growth; 6.2.4.1 Effect of Polypeptides on Precipitate Habitus; 6.2.4.2 The Formation of Metastable Polymorphs

6.2.5 Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances

Sommario/riassunto

Bio-nanotechnology covers the development of novel techniques and materials by making use of the inspiration derived from biomolecular structures and processes. The progress in molecular biology and microbiology over the past 50 years has provided a solid basis for such development.Well characterized natural biomolecules as well as tailored recombinant proteins and tailored microorganisms obtained by genetic engineering provide a large ""toolbox"" for the implementation of biological structures in a technical environment. Biologically inspired mater