| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910710100903321 |
|
|
Autore |
Fang J. B |
|
|
Titolo |
Analysis of the behavior of a freely burning fire in a quiescent atmosphere / / J. B. Fang |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1973 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
1973. |
Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes. |
Title from PDF title page. |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910960758603321 |
|
|
Autore |
Akman Murat |
|
|
Titolo |
The Brunn-Minkowski Inequality and a Minkowski Problem for Nonlinear Capacity |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (128 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.275 |
|
|
|
|
|
|
Classificazione |
|
35J6031B1539B6252A4035J2052A2035J92 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Minkowski geometry |
Inequalities (Mathematics) |
Nonlinear theories |
Elliptic functions |
Harmonic functions |
Partial differential equations -- Elliptic equations and systems -- Nonlinear elliptic equations |
Potential theory -- Higher-dimensional theory -- Potentials and capacities, extremal length |
Difference and functional equations -- Functional equations and inequalities -- Functional inequalities, including subadditivity, convexity, etc |
Convex and discrete geometry -- General convexity -- Inequalities and extremum problems |
Partial differential equations -- Elliptic equations and systems -- Variational methods for second-order elliptic equations |
Convex and discrete geometry -- General convexity -- Convex sets in $n$ dimensions (including convex hypersurfaces) |
Partial differential equations -- Elliptic equations and systems -- Quasilinear elliptic equations with $p$-Laplacian |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 275. January 2022." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Notation and statement of results -- Basic estimates for A-harmonic functions -- Preliminary reductions for the proof of theorem A -- Proof of theorem A -- Final proof of theorem A -- Appendix -- Introduction and statement of results -- Boundary behavior of A-harmonic functions in Lipschitz domains -- Boundary Harnack inequalities -- Weak convergence of certain measures on Sn-1 -- The Hadamard variational formula for nonlinear capacity -- Proof of theorem B. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"In this article we study two classical potential-theoretic problems in convex geometry. The first problem is an inequality of Brunn-Minkowski type for a nonlinear capacity, CapA, where A-capacity is associated with a nonlinear elliptic PDE whose structure is modeled on the p-Laplace equation and whose solutions in an open set are called A-harmonic"-- |
|
|
|
|
|
|
|
| |