1.

Record Nr.

UNINA9910710074403321

Autore

Crissman J. M

Titolo

Reference standard polyethylene resins and piping materials : final report (October 1, 1986 - September 30, 1987) / / J. M. Crissman

Pubbl/distr/stampa

Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1988

Descrizione fisica

1 online resource

Collana

NBSIR ; ; 88-3705

Altri autori (Persone)

CrissmanJ. M

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

1988.

Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes.

Title from PDF title page.

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNISA996647970203316

Autore

Yu Han

Titolo

Federated Learning in the Age of Foundation Models - FL 2024 International Workshops : FL@FM-WWW 2024, Singapore, May 14, 2024; FL@FM-ICME 2024, Niagara Falls, ON, Canada, July 15, 2024; FL@FM-IJCAI 2024, Jeju Island, South Korea, August 5, 2024; and FL@FM-NeurIPS 2024, Vancouver, BC, Canada, December 15, 2024, Revised Selected Papers / / edited by Han Yu, Xiaoxiao Li, Zenglin Xu, Randy Goebel, Irwin King

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031822407

9783031822391

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (295 pages)

Collana

Lecture Notes in Artificial Intelligence, , 2945-9141 ; ; 15501

Altri autori (Persone)

LiXiaoxiao

XuZenglin

GoebelRandy

KingIrwin

Disciplina

006.3

Soggetti

Artificial intelligence

Artificial Intelligence

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

This LNAI volume constitutes the post proceedings of International Federated Learning Workshops such as follows: FL@FM-WWW 2024, FL@FM-ICME 2024, FL@FM-IJCAI 2024 and FL@FM-NeurIPS 2024. This LNAI volume focuses on the following topics: Efficient Model Adaptation and Personalization, Data Heterogeneity and Incomplete Data, Integration of Specialized Neural Architectures, Frameworks and Tools for Federated Learning, Applications in Domain-Specific Contexts, Unsupervised and Lightweight Learning, and Causal Discovery and Black-Box Optimization. .