1.

Record Nr.

UNINA9910700976903321

Autore

Soulas George C (George Chris), <1966->

Titolo

Gas flux and density surrounding a cylindrical aperture in the free molecular flow regime [[electronic resource] /] / George C. Soulas

Pubbl/distr/stampa

Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2011]

Descrizione fisica

1 online resource (34 pages) : illustrations (some color)

Collana

NASA/TM ; ; 2011-216970

Soggetti

Particle flux density

Cylindrical bodies

Apertures

Flow equations

Free molecular flow

Maxwell-Boltzmann density function

Gas density

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Nov. 1, 2011).

"March 2011."

Nota di bibliografia

Includes bibliographical references (pages 33-34).



2.

Record Nr.

UNINA9910709537403321

Autore

Garner E. L

Titolo

Standard reference materials : uranium isotopic standard reference materials (certification of uranium isotopic standard reference materials)/ / E. L. Garner, L. A. Machlan

Pubbl/distr/stampa

Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1971

Descrizione fisica

1 online resource

Collana

NBS special publication ; ; 260-27

Altri autori (Persone)

GarnerE. L

MachlanL. A

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

1971.

Contributed record: Metadata reviewed, not verified. Some fields updated by batch processes.

Title from PDF title page.

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNISA996490357703316

Titolo

Belief functions, theory and applications : 7th international conference, BELIEF 2022, Paris, France, October 26-28, 2022, proceedings / / edited by Sylvie Le Hégarat-Mascle, Isabelle Bloch, and Emanuel Aldea

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-031-17801-7

Descrizione fisica

1 online resource (318 pages)

Collana

Lecture Notes in Computer Science ; ; v.13506

Disciplina

658.403

Soggetti

Decision making - Mathematical models

Decision making - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Organization -- Contents -- Evidential Clustering -- A Distributional Approach for Soft Clustering Comparison and Evaluation -- 1 Introduction -- 2 Background and Related Work -- 2.1 Background on Clustering -- 2.2 Clustering Comparison Measures -- 3 A General Framework for Soft Clustering Evaluation Measures -- 3.1 Distribution-Based Representation of Soft Clustering -- 3.2 Distributional Measures -- 3.3 Approximation Methods -- 4 Illustrative Experiment -- 5 Conclusion -- References -- Causal Transfer Evidential Clustering -- 1 Introduction -- 2 Related Work -- 2.1 Transfer Evidential Clustering -- 2.2 Causal Feature Selection -- 3 Causal Transfer Evidential Clustering -- 4 Experiments -- 4.1 Synthetic Datasets -- 4.2 ALARM Network Dataset -- 5 Conclusion -- References -- A Variational Bayesian Clustering Approach to Acoustic Emission Interpretation Including Soft Labels -- 1 Introduction -- 2 Use of Soft Labels in a Variational Bayesian GMM -- 2.1 Directed Acyclic Graph -- 2.2 Learning Problem Under pl -- 2.3 Algorithm and Automatic Relevance Determination -- 3 First Results and First Conclusion -- 3.1 Data Set Description -- 3.2 The Priors -- 3.3 Sorting the Partitions -- 3.4 Results -- 4 Conclusion -- References -- Evidential Clustering by Competitive Agglomeration -- 1 Introduction -- 2 Background -- 2.1 Competitive Agglomeration (CA) -- 2.2 Basic Concepts of Belief



Functions -- 3 Main Results -- 3.1 Basic Idea and Motivations -- 3.2 The Proposed Method -- 4 Experimental Evaluation -- 4.1 An Numerical Example: Four-Class Dataset -- 4.2 Compared with Other Clustering Methods -- 5 Conclusion -- References -- Imperfect Labels with Belief Functions for Active Learning -- 1 Introduction -- 2 Background -- 2.1 Reminder on Belief Functions -- 2.2 K-Nearest Neighbors -- 2.3 EK-NN -- 2.4 Active Learning.

3 Classification of Imperfectly Labeled Data with EK-NN and Active Learning -- 3.1 EK-NN for Imperfectly Labeled Data -- 3.2 Parameters Optimization and i-EKNN -- 3.3 Labeling with Uncertainty and Imprecision -- 4 Experiments -- 4.1 Different Approaches for  Parameter -- 4.2 Experiment on Noised Real World Datasets -- 4.3 Experiment on Imperfectly Labeled Datasets -- 5 Conclusion -- References -- Machine Learning and Pattern Recognition -- An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers -- 1 Introduction -- 2 Epistemic Random Fuzzy Sets -- 2.1 General Framework -- 2.2 Gaussian Random Fuzzy Numbers -- 3 Neural Network Model -- 3.1 Propagation Equations -- 3.2 Loss Function -- 4 Experimental Results -- 4.1 Illustrative Example -- 4.2 Comparative Experiment -- 5 Conclusions -- References -- Ordinal Classification Using Single-Model Evidential Extreme Learning Machine -- 1 Introduction -- 2 Background -- 2.1 Dempster-Shafer Theory -- 2.2 Ordinal Extreme Learning Machine -- 3 Single-Model Multi-output Evidential Ordinal Extreme Learning Machine -- 3.1 Evidential Encoding Schemes -- 3.2 Construction of Evidential Ordinal ELM Model -- 4 Experiments -- 4.1 Artificial Dataset -- 4.2 UCI Datasets -- 5 Conclusion -- References -- Reliability-Based Imbalanced Data Classification with Dempster-Shafer Theory -- 1 Introduction -- 2 Reliability-Based Imbalanced Data Classification -- 2.1 Multiple Under-Sampling for Majority Class -- 2.2 Evaluate the Local Reliability for Classifiers Fusion -- 2.3 Employ Neighbors for Final Decision -- 3 Experiment Applications -- 3.1 Benchmark Datasets -- 3.2 Performance Evaluation -- 3.3 Influence of K and -- 3.4 Execution Time -- 4 Conclusion -- References -- Evidential Regression by Synthesizing Feature Selection and Parameters Learning -- 1 Introduction -- 2 Preliminaries.

2.1 Dempster-Shafer Theory -- 2.2 EVREG: Evidential Regression -- 3 Proposed Method -- 3.1 Construction of Evaluation Function -- 3.2 Feature Selection and Parameters Learning -- 4 Numerical Experiment -- 5 Conclusion -- References -- Algorithms and Evidential Operators -- Distributed EK-NN Classification -- 1 Introduction -- 2 Preliminaries -- 2.1 EK-NN: Evidential K-NN Classifier -- 2.2 Apache Spark -- 3 GE2K-NN: Global Exact EK-NN -- 4 Experiments -- 4.1 Performance Evaluation -- 4.2 Multi-node Experiments on TACC Frontera -- 5 Conclusions -- References -- On Improving a Group of Evidential Sources with Different Contextual Corrections -- 1 Introduction -- 2 Belief Functions: Notations and Concepts Used -- 2.1 Basic Concepts -- 2.2 Corrections -- 3 Learning a Group of Evidential Sources -- 4 Experiments -- 5 Conclusion -- References -- Measure of Information Content of Basic Belief Assignments -- 1 Introduction -- 2 Belief Functions -- 3 Generalized Entropy of a BBA -- 4 Information Content of a BBA -- 5 Information Gain and Information Loss -- 6 Conclusions -- References -- Belief Functions on Ordered Frames of Discernment -- 1 Introduction -- 2 Power Set of Ordered Elements -- 3 Combination of Belief Functions on Ordered Power Set -- 4 Distances on Belief Functions on Ordered Power Set -- 4.1 Distance Between Ordered Elements -- 4.2 Distance Between Belief Functions -- 5 Decision and Conflict on Ordered Elements -- 6 Belief Functions on



Ordered Fuzzy Elements -- 7 Conclusion -- References -- On Modelling and Solving the Shortest Path Problem with Evidential Weights -- 1 Introduction -- 2 Preliminaries -- 2.1 Deterministic Shortest Path Problem -- 2.2 Belief Function Theory -- 3 Shortest Path Problem with Evidential Weights -- 3.1 Modelling -- 3.2 Solving -- 3.3 Sizes of Optweak and Optstr -- 4 Conclusion -- References.

Data and Information Fusion -- Heterogeneous Image Fusion for Target Recognition Based on Evidence Reasoning -- 1 Introduction -- 2 Brief Recall of Evidence Reasoning -- 3 Heterogeneous Image Fusion for Target Recognition -- 3.1 Mutual Learning of the Networks for Heterogeneous Images -- 3.2 Weighted Fusion of Multiple Classification Results -- 4 Experiment -- 4.1 Datasets and Preprocessing -- 4.2 Experimental Environment and Parameter Settings -- 4.3 Effectiveness of the Mutual Learning of Heterogeneous Images -- 4.4 Results and Analysis -- 5 Conclusion -- References -- Cluster Decomposition of the Body of Evidence -- 1 Introduction -- 2 Basic Concepts of the Evidence Theory -- 3 Evidence Clustering -- 3.1 Restriction and Extension of the Mass Function -- 3.2 Statement of the Problem of Clustering the Body of Evidence Based on Conflict Optimization -- 3.3 Cluster Decomposition of Evidence Based on the Conflict Density Function -- 3.4 The k-Means Algorithm for the Body of Evidence -- 4 Evaluation of the Internal Conflict of the Body of Evidence Based on Its Clustering -- 5 Conclusion -- References -- Evidential Trustworthiness Estimation for Cooperative Perception -- 1 Introduction -- 2 Related Works -- 3 Problem Statement with Object Detectability -- 4 Evidential Trustworthiness Estimation -- 4.1 Coherency -- 4.2 Consistency -- 4.3 Confirmation Through Free Space and Objects -- 5 Results -- 5.1 Simulation Study -- 5.2 Experimental Results -- 6 Conclusion -- References -- An Intelligent System for Managing Uncertain Temporal Flood Events -- 1 Introduction -- 2 Preliminaries -- 2.1 Theory of Belief Functions -- 2.2 Allen's Interval Algebra -- 3 Temporal Representation and Reasoning Under Uncertainty -- 3.1 Modeling Uncertain Temporal Flood Events -- 3.2 Temporal Reasoning Under Uncertainty -- 4 Intelligent Query-Answering System.

4.1 System Architecture -- 4.2 Illustrative Examples -- 5 Conclusions and Future Work -- References -- Statistical Inference - Graphical Models -- A Practical Strategy for Valid Partial Prior-Dependent Possibilistic Inference -- 1 Introduction -- 2 Background -- 3 Valid Inference Under Partial Priors -- 3.1 Partial Priors -- 3.2 Validity and Its Consequences -- 3.3 How to Achieve (Strong) Validity -- 4 Practical IM Construction -- 4.1 Likelihood-Based Contour -- 4.2 Computation -- 5 Illustration -- 6 Conclusion -- References -- On Conditional Belief Functions in the Dempster-Shafer Theory -- 1 Introduction -- 2 Basics of D-S Theory of Belief Functions -- 3 Conditional Belief Functions -- 4 Summary and Conclusions -- References -- Valid Inferential Models Offer Performance and Probativeness Assurances -- 1 Introduction -- 2 Background -- 2.1 Two-Theory Problem -- 2.2 Inferential Models Overview -- 3 Two P's in the Same Pod -- 3.1 Performance -- 3.2 Probativeness -- 4 Illustrations -- 4.1 Normal Mean -- 4.2 Bivariate Normal Correlation -- 5 Conclusion -- References -- Links with Other Uncertainty Theories -- A Qualitative Counterpart of Belief Functions with Application to Uncertainty Propagation in Safety Cases -- 1 Introduction -- 2 From Belief Functions to Qualitative Capacities -- 3 Expert Elicitation Approach -- 4 Logical Inference for Qualitative Capacities -- 5 Application to Safety Cases -- 6 Application Example -- 7 Conclusion -- References -- The Extension of Dempster's Combination Rule Based on Generalized Credal Sets -- 1 Introduction



-- 2 Basic Notions Concerning Monotone Measures and Belief Functions -- 3 Modelling Uncertainty by Belief Functions and Imprecise Probabilities -- 4 Contradictory Upper Previsions and Generalized Credal Sets -- 5 Updating Information Based on LG-Credal Sets -- 6 Generalized Credal Sets and Dempster's Rule.

7 Conclusion.