1.

Record Nr.

UNINA9910708220103321

Autore

Pepi Marc S.

Titolo

Advances in additive manufacturing : artificial intelligence, nature-inspired materials, and biomanufacturing / / edited by Ajay Kumar, Ravi Kant Mittal, and Abid Haleem

Pubbl/distr/stampa

Amsterdam, Netherlands ; ; Oxford, England ; ; Cambridge, Massachusetts : , : Elsevier, , [2023]

©2023

ISBN

9780323918343

0323918352

Descrizione fisica

1 online resource (522 pages)

Collana

Additive Manufacturing Materials and Technologies

Disciplina

621.988

Soggetti

Additive manufacturing

Manufacturing processes - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"ARL-SR-0357."

"July 2016."

"A Compilation of presentations by Marc Pepi, Todd Palmer, Jennifer Sietins, Jonathan Miller, Dan Berrigan, and Ricardo Rodriquez."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Front Cover -- Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing -- Copyright Page -- Contents -- List of contributors -- About the editors -- I. Introduction -- 1 Introduction to additive manufacturing technologies -- 1.1 Introduction -- 1.2 Brief history of additive manufacturing -- 1.3 Classes of additive manufacturing -- 1.3.1 Vat photopolymerization -- 1.3.2 Material jetting -- 1.3.3 Binder jetting process -- 1.3.4 Material extrusion -- 1.3.5 Sheet lamination -- 1.3.6 Powder bed fusion -- 1.3.7 Directed energy deposition (DED) -- 1.4 Areas of application of additive manufacturing -- 1.4.1 Foods and housing -- 1.4.2 Healthcare -- 1.4.3 Automobiles and aerospace -- 1.4.4 Electronics -- 1.4.5 Consumers product and jewelry -- 1.5 Summary -- References -- Further reading -- 2 Trends in additive manufacturing: an exploratory study -- 2.1 Introduction -- 2.2 Research objectives of the chapter -- 2.3 Comparison of additive manufacturing with traditional manufacturing processes -- 2.4 Additive



manufacturing -- 2.5 What and why of additive manufacturing -- 2.6 Development trends in additive manufacturing -- 2.7 Classification of additive manufacturing methods based on material characteristics -- 2.7.1 Powder-based additive manufacturing -- 2.7.1.1 Electron beam melting -- 2.7.1.2 Selective laser melting -- 2.7.1.3 Selective laser sintering -- 2.7.1.4 Laser metal deposition -- 2.7.1.5 Three-dimensional printing -- 2.7.2 Liquid-based additive manufacturing -- 2.7.2.1 Multijet modeling -- 2.7.2.2 Rapid freeze prototyping -- 2.7.2.3 Stereolithography -- 2.7.3 Solid-/filament-based additive manufacturing -- 2.7.3.1 Fused deposition Modeling -- 2.7.3.2 Laminated object manufacturing -- 2.7.3.3 Freeze form extrusion fabrication -- 2.8 Extensive capabilities of additive manufacturing in the current scenario.

2.9 Application areas of additive manufacturing -- 2.9.1 Medical manufacturing -- 2.9.2 Aerospace and automotive manufacturing -- 2.9.3 Architectural and jewelry manufacturing -- 2.10 Challenges being taken up by additive manufacturing -- 2.11 Future applications and technologies of additive manufacturing -- 2.12 Conclusion -- References -- Further reading -- 3 Addictive manufacturing in the Health 4.0 era: a systematic review -- 3.1 Background and introduction -- 3.2 Additive manufacturing process and technologies -- 3.3 Application in the health-care industry -- 3.4 Materials and methods -- 3.4.1 Information sources -- 3.4.2 Search strategy and study selection -- 3.4.3 Data collection process -- 3.5 Results -- 3.6 Discussion -- 3.6.1 Global additive manufacturing market -- 3.6.2 Advantages of additive manufacturing processes -- 3.6.3 Challenges of additive manufacturing processes -- 3.6.4 Role of additive manufacturing during pandemic COVID-19 -- 3.7 Conclusion -- References -- 4 Integration of reverse engineering with additive manufacturing -- 4.1 Introduction -- 4.2 Concept of RE -- 4.3 Product development by RE and AM -- 4.4 Integrating RE with AM -- 4.4.1 Integration of RE and AM by constructing a 3D CAD model from the point cloud and obtaining an STL model for the AM system -- 4.4.1.1 Data acquisition -- 4.4.1.2 Processing of acquired data -- 4.4.1.2.1 Edge-based segmentation -- 4.4.1.2.2 Region-based segmentation -- 4.4.1.2.3 Attributes-based segmentation -- 4.4.1.2.4 Model-based segmentation -- 4.4.1.3 Surface fitting and CAD model construction -- 4.4.2 Integrating RE and AM by direct generation of STL model file from point cloud -- 4.4.3 Integration of RE and AM by Direct Conversion of Data Points to Sliced File -- 4.5 Data digitization techniques in RE -- 4.5.1 Noncontact data acquisition RE techniques.

4.5.1.1 Active data acquisition techniques -- 4.5.1.2 Passive data acquisition techniques -- 4.5.1.3 Medical imaging RE techniques -- 4.5.1.4 Contact-based RE techniques -- 4.6 Summary -- References -- II. Additive manufacturing technologies -- 5 Recent innovative developments on additive manufacturing technologies using polymers -- 5.1 A brief introduction to AM technologies -- 5.2 AM market and innovation opportunities -- 5.3 Innovative AM technologies -- 5.3.1 AM based on FDM or fused filament fabrication -- 5.3.1.1 Delta, polar, and selective compliance assembly robot arm (SCARA) FDM -- 5.3.1.2 Koala 3D printer -- 5.3.1.3 Continuous 3D printing -- 5.3.1.4 Melt electrospinning/FDM printing -- 5.3.1.5 Multiaxis 3D printing -- 5.3.1.5.1 Rotational axis 3D printing -- 5.3.1.5.2 Multitool 3D printers -- 5.3.1.5.3 3D microwave printing -- 5.3.1.6 Continuous carbon fiber printing -- 5.3.1.7 AddJoining process -- 5.3.1.8 Metal parts extrusion via FDM -- 5.3.1.9 FDM and sintering -- 5.3.2 AM based on VAT photopolymerization: SLA or digital light processing (DLP) -- 5.3.2.1 Micro-SLA and direct laser writing (DLW) -- 5.3.2.2 Computed axial



lithography -- 5.3.2.3 Continuous Liquid Interface Production -- 5.3.2.4 Continuous single droplet 3DP -- 5.3.2.5 Freeze-drying DLP -- 5.3.2.6 High area rapid printing -- 5.3.3 AM based on powder bed fusion (PBF) or SLS -- 5.3.3.1 Continuous 3D printing-SLS -- 5.4 Conclusions and future perspective -- Acknowledgments -- References -- 6 Printing file formats for additive manufacturing technologies -- 6.1 Introduction -- 6.2 3D model representation data formats in additive manufacturing techniques -- 6.2.1 Standard tessellation language format -- 6.2.2 Additive manufacturing format -- 6.2.3 3D manufacturing format -- 6.2.4 OBJ format -- 6.2.5 Virtual reality modeling language format -- 6.2.6 Jupiter Tessellation format.

6.2.7 Extensible 3D format -- 6.2.8 Cubital Facet List format -- 6.2.9 Solid interchange format -- 6.2.10 Surface triangle hinted format -- 6.3 Comparison of 3D model representation data formats -- 6.4 Sliced model representation data formats in additive manufacturing -- 6.4.1 Common layer interface format -- 6.4.2 Layer exchange ASCII format -- 6.4.3 Stereolithography contour format -- 6.4.4 Hewlett Packard Graphics Language format -- 6.4.5 Comparison of sliced model representation data formats in additive manufacturing -- 6.5 Other additive manufacturing interfaces -- 6.5.1 Layered manufacturing interface -- 6.5.2 Rapid prototyping interface -- 6.5.3 Voxel-based modeling method -- 6.6 Data exchange standards utilization in additive manufacturing -- 6.6.1 Standard for the Exchange of Product Model standard -- 6.6.2 Initial graphics exchange specification standard -- 6.7 Discussion -- 6.8 Summary -- References -- 7 Additive manufacturing techniques used for preparation of scaffolds in bone repair and regeneration -- 7.1 Introduction -- 7.2 Scaffold design -- 7.2.1 Computer-aided design-based methods -- 7.2.2 Optimization of topology -- 7.2.3 Reverse modeling -- 7.2.4 Mathematical modeling -- 7.3 Additive manufacturing techniques -- 7.3.1 Selective laser sintering -- 7.3.2 Selective laser melting -- 7.3.3 Extrusion-based printing -- 7.3.4 Fused deposition modeling -- 7.3.5 Electron beam melting -- 7.3.6 Stereolithography -- 7.3.7 Powder inkjet printing -- 7.3.8 Electrospinning -- 7.4 Posttreatments -- 7.4.1 Heat treatment -- 7.4.2 Surface treatment -- 7.4.2.1 Chemical methods of surface modification -- 7.4.2.2 Acid etching -- 7.4.2.3 Electrochemical anodization -- 7.4.3 Coatings -- 7.4.3.1 Inorganic coatings -- 7.4.3.2 Organic biomolecule coatings -- 7.5 Challenges and conclusions -- References.

8 Cold spray technology: a perspective of nature-inspired feature processing and biomanufacturing by a heatless additive me... -- 8.1 Introduction: a heatless additive method for nature-inspired, bio- and nanofeatures -- 8.2 Cold spraying principle and processing conditions for nanopowders -- 8.3 Development of superhydrophobic properties using the cold spray additive method -- 8.4 Cold spray additive biomanufacturing of biocompatible coating for surgical implant -- 8.5 Concluding remarks on the use of CS as nature-inspired and/or biomanufacturing -- References -- 9 Preprocessing and postprocessing in additive manufacturing -- 9.1 Introduction -- 9.2 Preprocessing in additive manufacturing -- 9.2.1 Preparation of CAD model -- 9.2.2 Conversion to STL file -- 9.2.2.1 Facet orientation rule -- 9.2.2.2 Adjacency rule or vertex-to-vertex rule -- 9.2.3 Diagnosis of STL file error -- 9.2.4 Part orientation -- 9.2.5 Generation/design of support -- 9.2.6 Types of support structure -- 9.2.7 Slicing -- 9.2.8 Generation of tool path pattern and internal hatching pattern -- 9.3 Postprocessing in additive manufacturing -- 9.3.1 Removal of support material -- 9.3.2 Improvement in surface finish -- 9.3.3 Improvement in accuracy -- 9.3.4 Esthetic improvement of additive manufacturing



products -- 9.3.5 Modifying property of additive manufacturing products -- 9.4 Summary -- References -- 10 Computer vision based online monitoring technique: part quality enhancement in the selective laser melting process -- 10.1 Introduction -- 10.2 Experimental methods -- 10.2.1 Design of experiment -- 10.2.2 Methods and algorithms of analysis -- 10.2.2.1 Edge detection and analysis -- 10.2.2.2 Greyscale pixel value calculation and analysis -- 10.2.2.3 Clustering classification and analysis -- 10.3 Results and discussion -- 10.3.1 Edge detection analysis.

10.3.1.1 Layer no. 1 edge detection analysis.