| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910144728303321 |
|
|
Titolo |
3D laser microfabrication [[electronic resource] ] : principles and applications / / edited by Hiroaki Misawa and Saulius Juodkazis |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, : Wiley-VCH, c2006 |
|
|
|
|
|
|
|
ISBN |
|
1-280-72338-6 |
9786610723386 |
3-527-60846-X |
3-527-60840-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (406 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
MisawaHiroaki |
JuodkazisSaulius |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Lasers - Industrial applications |
Microfabrication |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
3D Laser Microfabrication; Contents; List of Contributors; 1 Introduction; 2 Laser-Matter Interaction Confined Inside the Bulk of a Transparent Solid; 2.1 Introduction; 2.2 Laser-matter Interactions: Basic Processes and Governing Equations; 2.2.1 Laser Intensity Distribution in a Focal Domain; 2.2.2 Absorbed Energy Density Rate; 2.2.3 Electron-phonon (ions) Energy Exchange, Heat Conduction and Hydrodynamics: Two-temperature Approximation; 2.2.4 Temperature in the Absorption Region; 2.2.5 Absorption Mechanisms |
2.2.6 Threshold for the Change in Optical and Material Properties ("Optical Damage")2.3 Nondestructive Interaction: Laser-induced Phase Transitions; 2.3.1 Electron-Phonon Energy Exchange Rate; 2.3.2 Phase Transition Criteria and Time; 2.3.3 Formation of Diffractive Structures in Different Materials; 2.3.3.1 Modifications Induced by Light in Noncrystalline Chalcogenide Glass; 2.3.3.2 Two-photon Excitation of Fluorescence; 2.3.3.3 Photopolymerization; 2.3.3.4 Photorefractive Effect; 2.4 Laser-Solid Interaction at High Intensity; 2.4.1 Limitations Imposed by the Laser Beam Self-focusing |
2.4.2 Optical Breakdown: Ionization Mechanisms and Thresholds2.4.2.1 |
|
|
|
|
|
|
|
|
|
|
|
Ionization by Electron Impact (Avalanche Ionization); 2.4.2.2 Multiphoton Ionization; 2.4.3 Transient Electron and Energy Density in a Focal Domain; 2.4.2.1 Ionization and Damage Thresholds; 2.4.3.2 Absorption Coefficient and Absorption Depth in Plasma; 2.4.3.3 Electron Temperature and Pressure in Energy Deposition Volume to the End of the Laser Pulse; 2.4.4 Electron-to-ion Energy Transfer: Heat Conduction and Shock Wave Formation; 2.4.4.1 Electronic Heat Conduction; 2.4.4.2 Shock Wave Formation |
2.4.5 Shock Wave Expansion and Stopping2.4.6 Shock and Rarefaction Waves: Formation of Void; 2.4.7 Properties of Shock-and-heat-affected Solid after Unloading; 2.5 Multiple-pulse Interaction: Energy Accumulation; 2.5.1 The Heat-affected Zone from the Action of Many Consecutive Pulses; 2.5.2 Cumulative Heating and Adiabatic Expansion; 2.6 Conclusions; 3 Spherical Aberration and its Compensation for High Numerical Aperture Objectives; 3.1 Three-dimensional Indensity Point-spread Function in the Second Medium; 3.1.1 Refractive Indices Mismatch-induced Spherical Aberration |
3.1.2 Vectorial Point-spread Function through Dielectric Interfaces3.1.3 Scalar Point-spread Function through Dielectric Interfaces; 3.2 Spherical Aberration Compensation by a Tube-length Change; 3.3 Effects of Refractive Indices Mismatch-induced Spherical Aberration on 3D Optical Data Storage; 3.3.1 Aberrated Point-spread Function Inside a Bleaching Polymer; 3.3.2 Compensation for Spherical Aberration Based on a Variable Tube Length; 3.3.3 Three-dimensional Data Storage in a Bleaching Polymer; 3.4 Effects of Refractive Index Mismatch Induced Spherical Aberration on the Laser Trapping Force |
3.4.1 Intensity Point-spread Function in Aqueous Solution |
|
|
|
|
|
|
Sommario/riassunto |
|
A thorough introduction to 3D laser microfabrication technology, leading readers from the fundamentals and theory to its various potent applications, such as the generation of tiny objects or three-dimensional structures within the bulk of transparent materials. The book also presents new theoretical material on dielectric breakdown, allowing a better understanding of the differences between optical damage on surfaces and inside the bulk, as well as a look into the future.Chemists, physicists, materials scientists and engineers will find this a valuable source of interdisciplinary know |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910708011303321 |
|
|
Autore |
Whelan Joseph F. |
|
|
Titolo |
Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology : status of investigations, June 1996 / / by Joseph F. Whelan [and three others] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Denver, Colorado : , : U.S. Geological Survey, , 1998 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (iv, 41 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
U.S. Geological Survey open-file report ; ; 98-83 |
|
|
|
|
|
|
Soggetti |
|
Isotope geology - Nevada - Yucca Mountain |
Paleohydrology - Nevada - Yucca Mountain |
Radioactive waste sites - Nevada - Yucca Mountain |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Prepared in cooperation with the Nevada Operations Office, U.S. Department of Energy, under interagency agreement DE-A108-97NV12033." |
Title from title screen (viewed Mar. 10, 2015 ). |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 21-22). |
|
|
|
|
|
| |