1.

Record Nr.

UNINA9910705463303321

Titolo

Peer exchange workshop on the "perfect world measuring congestion" : workshop summary report

Pubbl/distr/stampa

Washington, DC : , : U.S. Department of Transportation, Federal Highway Administration, , [2014]

Descrizione fisica

1 online resource (44 unnumbered pages) : color illustrations

Soggetti

Traffic flow - Measurement

Traffic density - Measurement

Traffic engineering

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Dec. 16, 2014).

"FHWA-HOP-14-009."

"Washington, D.C., December 17-18, 2013."

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9911006990403321

Autore

Renardy Michael

Titolo

Mathematical analysis of viscoelastic flows / / Michael Renardy

Pubbl/distr/stampa

Philadelphia, Pa., : Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2000

ISBN

1-68015-790-6

0-89871-941-0

Descrizione fisica

1 electronic text (ix, 104 p.) : ill., digital file

Collana

CBMS-NSF regional conference series in applied mathematics ; ; 73

Disciplina

532/.0533

Soggetti

Viscous flow

Viscoelasticity

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (p. 95-102) and index.

Nota di contenuto

Preface -- 1. Phenomena in non-Newtonian flows -- 2. Mathematical formulation -- 3. Behavior in simple flows -- 4. Existence theory -- 5. Numerical methods -- 6. High Weissenberg number asymptotics -- 7. Reentrant corner singularities -- 8. Instabilities -- 9. Change of type -- 10. Jet breakup -- Bibliography -- Index.

Sommario/riassunto

This monograph is based on a series of lectures presented at the 1999 NSF-CBMS Regional Research Conference on Mathematical Analysis of Viscoelastic Flows. It begins with an introduction to phenomena observed in viscoelastic flows, the formulation of mathematical equations to model such flows, and the behavior of various models in simple flows. It also discusses the asymptotics of the high Weissenberg limit, the analysis of flow instabilities, the equations of viscoelastic flows, jets and filaments and their breakup, as well as several other topics.