1.

Record Nr.

UNINA9910705414903321

Autore

Miller Betty M.

Titolo

GEOPLAY : a knowledge-based expert system : a model for exploration play analysis / / by Betty M. Miller

Pubbl/distr/stampa

Washington : , : United States Government Printing Office, , 1995

Descrizione fisica

1 online resource (iv, 53 pages) : illustrations

Collana

U.S. Geological Survey bulletin ; ; 2118

Soggetti

Expert systems (Computer science)

Petroleum - Prospecting - Data processing

Stratigraphic traps (Petroleum geology) - Computer simulation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed August 28, 2014).

Also available online in PDF format from the U.S. Geological Survey Warehouse (http://pubs.er.usgs.gov/).

"A knowledge-based expert system designed to peiform as a diagnostic consultant to assist geologists to define potential petroleum plays, prospects, and reservoirs as input to an exploration play-analysis model used in the assessment of hydrocarbon resources."

Nota di bibliografia

Includes bibliographical references (pages 26-27).



2.

Record Nr.

UNINA9910547689403321

Autore

Sinharoy Arindam

Titolo

Environmental Technologies to Treat Rare Earth Element Pollution

Pubbl/distr/stampa

London : , : IWA Publishing, , 2022

©2021

ISBN

9781789062243

1789062241

Edizione

[1st ed.]

Descrizione fisica

1 online resource (342 pages)

Collana

Integrated Environmental Technology

Altri autori (Persone)

LensPiet

Disciplina

546.41

Soggetti

Rare earth industry - Environmental aspects

Rare earth industry

Rare earth metals - Environmental aspects

Pollution

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Contents -- Preface -- List of Contributors -- Part I: Environmental Technologies to Treat Rare Earth Pollution -- Chapter 1: Environmental technologies to treat pollution by rare earth elements -- 1.1 INTRODUCTION -- 1.2 BIOGEOCHEMICAL CYCLES OF RARE EARTH ELEMENTS -- 1.3 RECOVERY OF RARE EARTH ELEMENTS FROM WASTE RESOURCES -- 1.4 TECHNOLOGIES TO RECOVER RARE EARTH ELEMENTS -- 1.5 APPLICATION OF RARE EARTH ELEMENTS AS NANOPARTICLES -- REFERENCES -- Part II: Biogeochemical Cycles of Rare Earth Elements -- Chapter 2: Discovery and occurrence of lanthanoids and yttrium -- 2.1 NAMING AND STRUCTURE OF LANTHANOIDS AND YTTRIUM -- 2.1.1 Nomenclature -- 2.1.2 Structure -- 2.1.3 Other fancy names of REE -- 2.2 HISTORY OF Y AND REE DISCOVERY -- 2.2.1 Discovery of REE -- 2.2.2 Yttrium, Y, 1794 -- 2.2.3 Lanthanum, La, 1839 -- 2.2.4 Cerium, Ce, 1803 -- 2.2.5 Praseodymium, Pr, 1885 -- 2.2.6 Neodymium, Nd, 1885 -- 2.2.7 Promethium, Pm, 1947 -- 2.2.8 Samarium, Sm, 1879 -- 2.2.9 Europium, Eu, 1901 -- 2.2.10 Gadolinium, Gd, 1880 -- 2.2.11 Terbium, Tb, 1843 -- 2.2.12 Dysprosium, Dy, 1886 -- 2.2.13 Holmium, Ho, 1879 -- 2.2.14 Erbium, Er, 1843 -- 2.2.15 Thulium, Tm, 1879 -- 2.2.16 Ytterbium, Yb, 1878 -- 2.2.17 Lutetium, Lu, 1907 --



2.3 PRESENTATION OF THE SUITE OF LANTHANOIDS AND Y -- 2.4 OCCURRENCE OF LANTHANOIDS AND Y -- 2.4.1 REY in rocks -- 2.4.2 Analyses of REY in abundant minerals -- 2.4.3 REY distribution in the hydrosphere -- 2.5 REY DEPOSITS -- 2.5.1 Geopolitical sources of rare earth elements production -- 2.5.2 Endogenic enrichment of REY -- 2.5.2.1 Carbonatites -- 2.5.2.2 Pegmatites -- 2.5.2.3 Mountain pass REY deposit -- 2.5.2.4 Bayan Obo REY deposit -- 2.5.2.5 Peralkaline igneous deposits -- 2.5.2.6 Hydrothermal vein deposits -- 2.5.3 Exogenic enrichment -- 2.5.3.1 Regolith-hosted REY deposits -- 2.5.3.2 Ion-adsorbed deposits.

2.5.3.3 Ocean seabed mud -- 2.5.4 Anthropogenic REY enrichments -- 2.6 SUMMARY -- REFERENCES -- Chapter 3: Occurrence and detection of the rare earth elements -- 3.1 INTRODUCTION -- 3.2 MINERALOGY OF THE REE -- 3.3 PRIMARY SOURCES OF THE RARE EARTH ELEMENTS -- 3.4 PROCESSES INVOLVED IN THE FORMATION OF REE DEPOSITS -- 3.4.1 Igneous processes involved in REE deposit formation -- 3.4.2 Hydrothermal processes involved in REE deposit formation -- 3.4.3 Sedimentary, secondary and placer processes -- 3.5 RARE EARTH ELEMENT MINERAL DEPOSIT TYPES -- 3.5.1 Carbonatites -- 3.5.2 Alkaline rocks -- 3.5.3 Granites and rhyolites -- 3.5.4 Iron oxide-copper-gold (IOCG) -- 3.5.5 Unconformity-related -- 3.5.6 Placer and heavy mineral sands -- 3.5.7 Laterite and ionic clay deposits -- 3.6 EXPLORATION FOR REE DEPOSITS -- 3.7 CONCLUSIONS -- REFERENCES -- Chapter 4: Sources and applications of rare earth elements -- 4.1 INTRODUCTION -- 4.1.1 Occurrence in different geological systems, mineralogy and demand -- 4.1.2 Behavior of REE in different geological systems -- 4.2 BRIEF HISTORY OF REE -- 4.3 TYPES OF REE DEPOSITS -- 4.3.1 Primary REE deposits -- 4.3.2 Secondary REE deposits -- 4.3.2.1 Ion-adsorption deposits -- 4.3.2.2 Heavy mineral placer deposits -- 4.4 ALTERNATE SOURCES FOR REE -- 4.4.1 REE in coal and coal fly ash -- 4.4.2 REE in ocean-bottom sediments -- 4.4.3 Phosphorite deposits -- 4.4.4 REE in river sediments -- 4.4.5 Waste rock sources from old and closed mines -- 4.4.6 Red mud -- 4.4.7 Extraterrestrial REE resources -- 4.4.8 REE from electronic and industrial waste -- 4.5 INDUSTRIAL APPLICATIONS -- 4.5.1 Glass industry -- 4.5.2 Energy-efficient lighting -- 4.5.3 Rechargeable batteries -- 4.5.4 Permanent magnets -- 4.5.5 Electronics -- 4.5.6 Catalysts -- 4.5.7 Alloys -- 4.5.8 Defense applications -- 4.5.9 REE in paints and pigments.

4.5.10 REE in agriculture -- 4.5.11 REE in medicine -- 4.5.12 Miscellaneous -- 4.6 LOOKING INTO THE FUTURE -- REFERENCES -- Part III: Recovery of Rare Earth Elements from Waste Resources -- Chapter 5: Rare earth elements recovery from secondary sources -- 5.1 INTRODUCTION -- 5.2 SOURCES OF REE -- 5.2.1 Brine -- 5.2.2 Coal fly ash -- 5.3 REE RECOVERY FROM BRINE SOLUTIONS -- 5.4 REE RECOVERY FROM COAL FLY ASH -- 5.5 OTHER WASTE SOURCES -- 5.6 CONCLUSIONS -- REFERENCES -- Chapter 6: Rare earth elements recovery from red mud -- 6.1 INTRODUCTION -- 6.2 BAUXITE RESIDUE -- 6.2.1 Production -- 6.2.2 Composition -- 6.2.3 Particle size distribution of red mud -- 6.3 TECHNOLOGY FOR EXTRACTION OF REES FROM BAUXITE RESIDUE -- 6.3.1 Methods for physical beneficiation -- 6.3.1.1 General principle of a hydrocyclone operation process -- 6.3.1.2 General principle of the multi-gravity separator process -- 6.3.1.3 Hydrocyclone and multi-gravity separator for red mud treatment -- 6.3.2 Alkali roasting, smelting and leaching -- 6.3.3 Sulfation, roasting and leaching -- 6.3.4 Direct leaching of mineral acid -- 6.3.5 Pre-concentration-acid leaching -- 6.4 REE SEPARATION PROCESSES -- 6.4.1 Fractional crystallization and precipitation -- 6.4.2



Ion exchange -- 6.4.3 Solvent extraction -- 6.5 CONCLUSION -- REFERENCES -- Part IV: Technologies to Recover Rare Earth Elements -- Chapter 7 Adsorptive recovery of rare earth elements -- 7.1 INTRODUCTION -- 7.2 REE REMOVAL BY CHEMISORBENTS -- 7.2.1 Silica based adsorbents -- 7.2.2 Nanomaterials -- 7.2.3 Surface modification -- 7.3 BIOSORBENTS FOR THE RECOVERY OF REE -- 7.3.1 Advantages of biosorbents -- 7.3.2 Algae based biosorbents -- 7.3.3 Agrowaste -- 7.3.3.1 Animal waste -- 7.3.3.2 Plant-based waste -- 7.3.4 Activated carbon -- 7.3.5 Hydrogels -- 7.4 DESORPTION FOR THE RECOVERY OF ADSORBED REE -- 7.5 FUTURE PERSPECTIVE.

7.6 CONCLUSION -- REFERENCES -- Chapter 8: Microbial recovery of rare earth elements -- 8.1 INTRODUCTION -- 8.2 MICROBIAL RECOVERY OF RARE EARTH ELEMENTS -- 8.2.1 Bioleaching -- 8.2.2 Rare earth elements microbial interactions as a biorecovery option -- 8.2.2.1 Microbial cell wall interaction with rare earth elements -- 8.2.2.2 Microbial resistant mechanisms for the recovery of REE -- 8.2.2.2.1 Biosorption -- 8.2.2.2.2 Bioaccumulation -- 8.2.2.2.3 Biomineralization -- 8.2.2.2.4 Bioreduction -- 8.2.3 Selectivity of enzymes as REE recovery strategy -- 8.2.3.1 The role of REE in microbial metabolism -- 8.2.3.2 Selectivity of enzymes for REE -- 8.3 CHALLENGES AND FUTURE PERSPECTIVES OF REE BIORECOVERY -- REFERENCES -- Chapter 9: Bioleaching of rare earth elements from industrial and electronic wastes: mechanism and process efficiency -- 9.1 INTRODUCTION -- 9.2 MICROBIAL PROCESSES FOR RECOVERY OF RARE EARTH ELEMENTS (REE) -- 9.2.1 REE mobilization -- 9.2.1.1 Redoxolysis -- 9.2.1.2 Acidolysis -- 9.2.1.3 Complexolysis -- 9.2.2 REE biorecovery -- 9.2.2.1 Biosorption -- 9.2.2.2 Bioaccumulation -- 9.2.2.3 Bioprecipitation -- 9.3 ROLE OF ALGAL AND FUNGAL SPECIES IN THE RECOVERY OF REE -- 9.3.1 Algae -- 9.3.2 Fungi -- 9.4 MICROBIAL RECOVERY OF REE FROM DIFFERENT WASTES -- 9.4.1 Coal fly ash -- 9.4.2 Electronic wastes -- 9.4.3 Red mud -- 9.5 CONCLUSION -- REFERENCES -- Chapter 10: Biological recovery of rare earth elements from mine drainage using the sulfidogenic process -- 10.1 INTRODUCTION -- 10.2 REACTIVITY OF REE-BEARING MINERALS -- 10.2.1 Reactivity of REE-bearing carbonates -- 10.2.2 Reactivity of REE-bearing silicates -- 10.2.3 Reactivity of REE-bearing phosphates -- 10.3 CONVENTIONAL METHODS FOR RECOVERY OF REE -- 10.4 REE-RICH WASTEWATER ASSOCIATED WITH ACID MINE DRAINAGE -- 10.5 RECOVERY OF REE THROUGH BIOLOGICAL TREATMENT.

10.5.1 SRB treatment of REE-containing mining waste -- 10.5.2 Treatment of phosphogypsum waste leachate -- 10.5.2.1 Bioreactor performance -- 10.5.2.2 Mineralogy of the REE precipitates -- 10.5.3 Sulfidic treatment of AMD -- 10.5.3.1 Bioreactor performance -- 10.5.3.2 Mineralogy of REE precipitates -- 10.5.3.3 Toxicity of REE to bioreactor sludge -- 10.6 ECONOMIC FEASIBILITY OF REE RECOVERY FROM SECONDARY SOURCES -- 10.7 FINAL CONSIDERATION -- REFERENCES -- Chapter 11: Plant based removal and recovery of rare earth elements -- 11.1 INTRODUCTION -- 11.2 SOURCES AND RELEASE OF REE IN THE ENVIRONMENT -- 11.2.1 Chemical characteristics of REE -- 11.2.2 Sources of REE -- 11.2.2.1 Natural sources -- 11.2.2.2 Industrial sources -- 11.3 EXTRACTION AND RECOVERY OF REE -- 11.3.1 Phytoextraction -- 11.3.1.1 Agromining -- 11.3.1.2 REE plant uptake -- 11.3.1.3 Sequential extraction of REE from soil -- 11.3.2 Other extraction methods -- 11.4 PHYTOREMEDIATION OF REE -- 11.4.1 Plant metabolism for REE phytoremediation -- 11.4.1.1 Plant species selection -- 11.4.1.2 Bioindicator plants -- 11.4.1.3 REE in plant metabolism -- 11.4.2 Plants biomass for biosorption -- 11.5 WETLANDS FOR REE RETENTION AND RECOVERY -- 11.5.1 Natural



wetlands -- 11.5.2 Constructed wetlands -- 11.6 CONCLUSIONS -- REFERENCES -- Part V: Application of Rare Earth Elements as Nanoparticles -- Chapter 12: Rare earth doped nanoparticles and their applications -- 12.1 INTRODUCTION -- 12.2 BIOMEDICAL APPLICATIONS -- 12.2.1 Nanoparticles for medical treatment -- 12.2.1.1 Hyperthermal therapy -- 12.2.1.2 Magnetic resonance imaging (MRI) -- 12.2.2 Rare earth doped iron oxide nanoparticles -- 12.2.2.1 Iron oxide nanoparticles -- 12.2.2.2 Rare earth nanoparticles -- 12.2.2.3 Rare earth nanoparticle synthesis -- 12.2.2.3.1 Co-precipitation -- 12.2.2.3.2 Electrochemical synthesis.

12.2.2.3.3 Thermal decomposition synthesis.

Sommario/riassunto

Rare earth elements (REE) have applications in various modern technologies, e.g., semiconductors, mobile phones, magnets. They are categorized as critical raw materials due to their strategic importance in economies and high risks associated with their supply chain. Therefore, more sustainable practices for efficient extraction and recovery of REE from secondary sources are being developed. This book, Environmental Technologies to Treat Rare Earth Elements Pollution: Principles and Engineering: presents the fundamentals of the (bio)geochemical cycles of rare earth elements and which imbalances in these cycles result in pollution. overviews physical, chemical and biological technologies for successful treatment of water, air, soils and sediments contaminated with different rare earth elements. explores the recovery of value-added products from waste streams laden with rare earth elements, including nanoparticles and quantum dots. This book is suited for teaching and research purposes as well as professional reference for those working on rare earth elements. In addition, the information provided in this book is helpful to scientists, researchers and practitioners in related fields, such as those working on metal/metalloid microbe interaction and sustainable green approaches for resource recovery from wastes.