1.

Record Nr.

UNINA9910700973903321

Autore

Mason Lee S

Titolo

A summary of NASA architecture studies utilizing fission surface power technology [[electronic resource] /] / Lee S. Mason, David I. Poston

Pubbl/distr/stampa

Cleveland, Ohio : , : National Aeronautics and Space Administration, Glenn Research Center, , [2011]

Descrizione fisica

1 online resource (13 pages) : illustrations (chiefly color)

Collana

NASA/TM ; ; 2011-216819

Altri autori (Persone)

PostonDavid (David Irvin)

Soggetti

Nuclear electric power generation

Fission

Lunar surface

Mars surface

Space law

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Nov. 2, 2011).

"April 2011."

"Prepared for the Eigth International Energy Conversion Engineering Conference (IECEC) sponsored by the American Institute of Aeronautics and Astronautics, Nashville, Tennessee, July 25-28, 2010."

"AIAA-2010-6599."

Nota di bibliografia

Includes bibliographical references (page 13).



2.

Record Nr.

UNINA9910141438903321

Titolo

Color in computer vision : fundamentals and applications / / Theo Gevers ... [et al.]

Pubbl/distr/stampa

Hoboken, NJ, : Wiley, c2012

ISBN

9786613836229

9781283523776

1283523779

9781118350089

1118350081

9781118350065

1118350065

9781118350072

1118350073

Edizione

[1st ed.]

Descrizione fisica

1 online resource (386 p.)

Collana

Wiley-IS&T Series in Imaging Science and Technology

Altri autori (Persone)

GeversTheo

Disciplina

006.3/7

Soggetti

Computer vision

Color vision

Color photography

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Color in Computer Vision; Contents; Preface; 1 Introduction; 1.1 From Fundamental to Applied; 1.2 Part I: Color Fundamentals; 1.3 Part II: Photometric Invariance; 1.3.1 Invariance Based on Physical Properties; 1.3.2 Invariance By Machine Learning; 1.4 Part III: Color Constancy; 1.5 Part IV: Color Feature Extraction; 1.5.1 From Luminance to Color; 1.5.2 Features, Descriptors, and Saliency; 1.5.3 Segmentation; 1.6 Part V: Applications; 1.6.1 Retrieval and Visual Exploration; 1.6.2 Color Naming; 1.6.3 Multispectral Applications; 1.7 Summary; PART I Color Fundamentals; 2 Color Vision

2.1 Introduction2.2 Stages of Color Information Processing; 2.2.1 Eye and Optics; 2.2.2 Retina: Rods and Cones; 2.2.3 Ganglion Cells and Receptive Fields; 2.2.4 LGN and Visual Cortex; 2.3 Chromatic Properties



of the Visual System; 2.3.1 Chromatic Adaptation; 2.3.2 Human Color Constancy; 2.3.3 Spatial Interactions; 2.3.4 Chromatic Discrimination and Color Deficiency; 2.4 Summary; 3 Color Image Formation; 3.1 Lambertian Reflection Model; 3.2 Dichromatic Reflection Model; 3.3 Kubelka-Munk Model; 3.4 The Diagonal Model; 3.5 Color Spaces; 3.5.1 XYZ System; 3.5.2 RGB System

3.5.3 Opponent Color Spaces3.5.4 Perceptually Uniform Color Spaces; 3.5.5 Intuitive Color Spaces; 3.6 Summary; PART II Photometric Invariance; 4 Pixel-Based Photometric Invariance; 4.1 Normalized Color Spaces; 4.2 Opponent Color Spaces; 4.3 The HSV Color Space; 4.4 Composed Color Spaces; 4.4.1 Body Reflectance Invariance; 4.4.2 Body and Surface Reflectance Invariance; 4.5 Noise Stability and Histogram Construction; 4.5.1 Noise Propagation; 4.5.2 Examples of Noise Propagation through Transformed Colors; 4.5.3 Histogram Construction by Variable Kernel Density Estimation

4.6 Application: Color-Based Object Recognition4.6.1 Dataset and Performance Measure; 4.6.2 Robustness Against Noise: Simulated Data; 4.7 Summary; 5 Photometric Invariance from Color Ratios; 5.1 Illuminant Invariant Color Ratios; 5.2 Illuminant Invariant Edge Detection; 5.3 Blur-Robust and Color Constant Image Description; 5.4 Application: Image Retrieval Based on Color Ratios; 5.4.1 Robustness to Illuminant Color; 5.4.2 Robustness to Gaussian Blur; 5.4.3 Robustness to Real-World Blurring Effects; 5.5 Summary; 6 Derivative-Based Photometric Invariance; 6.1 Full Photometric Invariants

6.1.1 The Gaussian Color Model6.1.2 The Gaussian Color Model by an RGB Camera; 6.1.3 Derivatives in the Gaussian Color Model; 6.1.4 Differential Invariants for the Lambertian Reflection Model; 6.1.5 Differential Invariants for the Dichromatic Reflection Model; 6.1.6 Summary of Full Color Invariants; 6.1.7 Geometrical Color Invariants in Two Dimensions; 6.2 Quasi-Invariants; 6.2.1 Edges in the Dichromatic Reflection Model; 6.2.2 Photometric Variants and Quasi-Invariants; 6.2.3 Relations of Quasi-Invariants with Full Invariants

6.2.4 Localization and Discriminative Power of Full and Quasi-Invariants

Sommario/riassunto

While the field of computer vision drives many of today's digital technologies and communication networks, the topic of color has emerged only recently in most computer vision applications. One of the most extensive works to date on color in computer vision, this book provides a complete set of tools for working with color in the field of image understanding.  Based on the authors' intense collaboration for more than a decade and drawing on the latest thinking in the field of computer science, the book integrates topics from color science and computer vision, clearly linking theories,