|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910972378803321 |
|
|
Autore |
Heuts Gijs |
|
|
Titolo |
Goodwillie Approximations to Higher Categories |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence : , : American Mathematical Society, , 2021 |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (126 pages) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society ; ; v.272 |
|
|
|
|
|
|
Classificazione |
|
55P9955P1555P6555U3555U40 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Homotopy groups |
Algebraic topology |
Spectral sequences (Mathematics) |
Class field towers |
Algebraic topology -- Homotopy theory -- None of the above, but in this section |
Algebraic topology -- Homotopy theory -- Classification of homotopy type |
Algebraic topology -- Homotopy theory -- Homotopy functors |
Algebraic topology -- Applied homological algebra and category theory -- Abstract and axiomatic homotopy theory |
Algebraic topology -- Applied homological algebra and category theory -- Topological categories, foundations of homotopy theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"July 2021, volume 272, number 1333 (third of 7 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Main results -- Constructing n-excisive approximations -- Another construction of polynomial approximations -- Coalgebras in stable [infinity]-operads -- The space of Goodwillie towers -- Examples. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
"We construct a Goodwillie tower of categories which interpolates between the category of pointed spaces and the category of spectra. This tower of categories refines the Goodwillie tower of the identity functor in a precise sense. More generally, we construct such a tower for a large class of -categories C and classify such Goodwillie towers in terms of the derivatives of the identity functor of C. As a particular application we show how this provides a model for the homotopy |
|
|
|
|