1.

Record Nr.

UNINA9910592994303321

Autore

Ma Guozheng

Titolo

Micro process and quality control of plasma spraying / / Guozheng Ma, Shuying Chen and Haidou Wang

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore Pte Ltd., , [2022]

©2022

ISBN

981-19-2742-1

Descrizione fisica

1 online resource (679 pages)

Collana

Springer series in advanced manufacturing

Disciplina

671.734

Soggetti

Plasma spraying

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- 503740_1_En_BookFrontmatter_OnlinePDF -- Preface -- Contents -- 503740_1_En_1_Chapter_OnlinePDF -- 1 Introduction -- 1.1 Technical Principle of Plasma Spraying -- 1.1.1 Plasma -- 1.1.2 Plasma Arc -- 1.1.3 Basic Process of Plasma Spraying -- 1.1.4 Working Gas for Plasma Spraying -- 1.2 Development and Characteristics of Plasma Spraying -- 1.2.1 Development History of Plasma Spraying -- 1.2.2 Technical Characteristics of Plasma Spraying -- 1.3 Typical Plasma Spraying Technology -- 1.3.1 Conventional Plasma Spraying (PS) -- 1.3.2 Supersonic Plasma Spraying (SPS) -- 1.3.3 Low Pressure Plasma Spraying (LPPS) -- 1.3.4 Water-stabilized Plasma Spraying (WSPS) -- 1.3.5 Tricathode Plasma Spraying -- 1.3.6 Suspension Plasma Spraying -- 1.3.7 Reactive Plasma Spraying -- 1.4 Developing Direction of Plasma Spraying Technology -- 1.4.1 Development Prospects of Basic Theory -- 1.4.2 Trends for Hardware Development -- 1.4.3 Prospects of Spraying Materials -- References -- 503740_1_En_2_Chapter_OnlinePDF -- 2 Microcosmic Interaction Between Plasma Jet and Spraying Particles -- 2.1 Basic Characteristics of Plasma Jet -- 2.1.1 Simulation and Experiment of Gas Ionization Characteristics in Spray Gun -- 2.1.2 Mathematical Model of Flow Field of Plasma Jet -- 2.1.3 Temperature Field Distribution Characteristics of Plasma Jet -- 2.1.4 Velocity Field Distribution Characteristics of Plasma Jet -- 2.1.5 Composition Characteristics of Plasma Jet -- 2.2 Heat Transfer in Jet and Formation of Spraying Droplets -- 2.2.1



Temperature Monitoring of Particles -- 2.2.2 Heating-up and Evaporation of Particles -- 2.2.3 Effect of Process Parameters on Particle Temperature -- 2.3 Momentum Transfer and Particle Acceleration in Jet -- 2.3.1 Particle Velocity Monitoring -- 2.3.2 Force Analysis of Particles -- 2.3.3 Effect of Process Parameters on Particle Velocity.

2.4 Mass Transfer in Jet and Physical and Chemical Reaction of In-Flight Particles -- 2.4.1 Particle Quenching Collector -- 2.4.2 Physical Refinement of Particles -- 2.4.3 Reaction of Particles with Ambient Air -- 2.4.4 Self-reaction of Particles -- References -- 503740_1_En_3_Chapter_OnlinePDF -- 3 Impact Spread Behavior of Flying Droplets and Properties of Splats -- 3.1 General Characteristics of Droplet Impact Process -- 3.1.1 Deposition Characteristic Parameters of Droplet -- 3.1.2 Mechanisms of Droplet Spreading -- 3.1.3 Factors Influencing the Droplet Spreading Process -- 3.1.4 Monitoring the Droplet Spreading Process -- 3.1.5 Characteristics of Droplet Grain Growth -- 3.2 Numerical Simulation of Droplet Impact Behavior -- 3.2.1 Simulation of Droplet Impact and Spreading Process -- 3.2.2 Boundaries and Conditions for Droplet Impact Simulation -- 3.2.3 Physical Model of Droplet Impact Process -- 3.2.4 Influence of Viscosity Coefficient on Droplet Spreading Process -- 3.3 Capture of Splats and Fundamentals of Image Analyses -- 3.3.1 Acquisition Device of a Single Splat -- 3.3.2 Image Processing Functions -- 3.3.3 The Process of Extracting Splats -- 3.3.4 Splat Morphological Parameters -- 3.4 Solidification Morphology of Splats -- 3.4.1 Typical Morphology of Splats -- 3.4.2 Effect of Typical Parameters on the Appearance of Splats -- 3.4.3 Statistical Characteristics of Splat Morphology -- 3.4.4 Statistical Signation of Splat Solidification Types -- 3.5 Evaluating the Bonding Strength of Splats -- 3.5.1 Scratch Measurement Mechanism -- 3.5.2 Morphology of Typical Splats -- 3.5.3 Multiple Physical Signals During the Debonding of Splats -- 3.5.4 Debonding Process and Mechanism of Splats -- 3.5.5 Characterization of Bonding Strength of Splats -- 3.6 Evaluating the Residual Stress of Splats -- 3.6.1 Principle of the FIB-DIC Residual Stress Test.

3.6.2 Principle of the DIC Non-contact Strain Test -- 3.6.3 Calibration of Stress Release Coefficient -- 3.6.4 Residual Stress Measurement of Typical Particles -- 3.6.5 Error Analysis of Residual Stress Testing Process -- 3.6.6 Formation Mechanism of Droplet Residual Stress -- References -- 503740_1_En_4_Chapter_OnlinePDF -- 4 Characterization of Primary Defects and Quality Evaluation of Coatings -- 4.1 Microscopic Process of Coating Growth -- 4.1.1 Space Distribution of Particles -- 4.1.2 Wetting Mechanism of First-layered Flattening Particles -- 4.1.3 Wetting Mechanism of Follow-up Flattening Particles -- 4.1.4 Pore Forming Mechanism in Coating -- 4.2 Characterization Methods of Coating Porosity -- 4.2.1 Image Analysis Method -- 4.2.2 Three-dimensional Computed Tomography Method -- 4.2.3 Weighing Method -- 4.2.4 Drainage Method -- 4.2.5 Electrolytic Coloring -- 4.2.6 Air Permeability Comparison Method -- 4.2.7 Small-Angle Neutron Scattering Method -- 4.2.8 Microwave Method -- 4.2.9 Ultrasonic Method -- 4.3 Quantitative Characterization of Coating Bonding Strength -- 4.3.1 Traditional Test Method -- 4.3.2 Bonding Strength Measurement with the Static Load Indentation Method and Acoustic Emission Technology -- 4.3.3 Bonding Strength Measurement Impact Indentation Method and Acoustic Emission Technology -- 4.3.4 Other Testing Methods -- 4.4 Testing Method for Residual Stress of Coatings -- 4.4.1 Nondestructive Testing -- 4.4.2 Mechanical Method -- 4.4.3



Nanoindentation Method -- 4.4.4 Focused Ion Beam-Electron Beam Method -- 4.5 Other Performance Tests for Coatings -- 4.5.1 Microhardness Test -- 4.5.2 Elastic Modulus -- 4.5.3 Fracture Toughness -- References -- 503740_1_En_5_Chapter_OnlinePDF -- 5 Coating Quality Control Based on Traditional Process Measures -- 5.1 Pretreatment Process -- 5.1.1 Sand Blasting -- 5.1.2 Dry Ice-Assisted Deposition.

5.1.3 Mechanical Roughing -- 5.1.4 Laser Texturing -- 5.2 Traditional Optimization of Spraying Process Parameters -- 5.2.1 Typical Adjustable Spraying Parameters -- 5.2.2 Orthogonal Experiment Method -- 5.2.3 Response Surface Method -- 5.2.4 Neural Network Method -- 5.2.5 Other Methods -- 5.3 Afterprocessing-Heat Treatments -- 5.3.1 Laser Remelting -- 5.3.2 Induction Remelting -- 5.3.3 Electron Beam Remelting -- 5.3.4 Argon Arc Remelting -- 5.3.5 Homogeneous Heat Treatment -- 5.3.6 Hot Isostatic Pressing -- 5.3.7 Flame Remelting -- 5.4 Afterprocessing-Other Methods -- 5.4.1 Hole Sealing Treatment -- 5.4.2 Ultrasonic Shock Treatment -- 5.4.3 Steam Treatment -- 5.4.4 Electro Polarization Treatment Process -- References -- 503740_1_En_6_Chapter_OnlinePDF -- 6 Coating Quality Control Based on State Optimization of Droplets and Splats -- 6.1 Microstructure and Deoxidation Reaction Control of BaTiO3 Coating -- 6.1.1 Experimental Process -- 6.1.2 Effect of Spraying Atmosphere on Microstructure and Mechanical Properties of BaTiO3 Coating -- 6.1.3 Defect Formation Mechanisms of BaTiO3 Coatings in Different Atmospheric Conditions -- 6.1.4 Dielectric Properties of BaTiO3 Coating and Its Oxygen Loss and Reduction Mechanism -- 6.2 Micro Formation Mechanism and Microstructure Control of WC-10Co4Cr Coating -- 6.2.1 Experimental Process -- 6.2.2 Behavior and Interaction Mechanisms of WC Particles During Flighting, Spreading and Solidification -- 6.2.3 Evolution of Original Structural Characteristics of WC Coating -- 6.2.4 Evolution of WC Coating Microstructure Characteristics -- 6.3 Quality Optimization of the Fe-Based Amorphous Coatings -- 6.3.1 Test Methods and Equipment -- 6.3.2 Droplet Flight Characteristics of Fe-Based Amorphous Alloy Coatings -- 6.3.3 Solidification Types of Flat Particles and Its Mechanisms.

6.3.4 Phase Characteristics of Coating and Determination of Amorphous Phase Content -- 6.3.5 Micromorphology and Mechanical Properties of Fe-Based Amorphous Alloy Coatings -- 6.4 Quality Optimization of the Thermal Barrier Coatings -- 6.4.1 Condition Monitoring of In-flight Particles -- 6.4.2 Analysis of Physicochemical Properties and Spreading Morphology of Droplets -- 6.4.3 Microstructure Characteristics of Coatings -- 6.4.4 Microcosmic Defects and Properties -- 6.4.5 Thermal Insulation Properties -- 6.4.6 High-Temperature Oxidation Resistance -- 6.4.7 Thermal Shock Resistance -- References -- 503740_1_En_7_Chapter_OnlinePDF -- 7 Typical Plasma Sprayed Coatings and Applications -- 7.1 Typical Wear Resistance Coatings and Applications -- 7.1.1 Tribological Properties of Typical Amorphous Coatings -- 7.1.2 Tribological Properties of Typical Alloy Coatings -- 7.1.3 Tribological Properties of Oxide Ceramic Coatings -- 7.1.4 Tribological Properties of Carbide Ceramic Coatings -- 7.2 Typical Thermal Barrier Coatings and Applications -- 7.2.1 Novel Thermal Barrier Coatings -- 7.2.2 Typical Structures of Plasma Sprayed Thermal Barrier Coatings -- 7.2.3 Properties of Thermal Barrier Coatings -- 7.3 Typical Functional Coatings and Applications -- 7.3.1 Stealth Absorbent Coating -- 7.3.2 Biomedical Coating -- 7.3.3 Solid Oxide Fuel Cell Coating -- 7.3.4 Bionic Superhydrophobic Coating --



References.

2.

Record Nr.

UNINA9910694567103321

Autore

Grubbs J. W

Titolo

Exchanges of water between the upper Floridan aquifer and the lower Suwannee and lower Santa Fe Rivers, Florida [[electronic resource] /] / by J.W. Grubbs and C.A. Crandall ; prepared in cooperation with the Suwannee River Water Management District

Pubbl/distr/stampa

Reston, Va. : , : U.S. Geological Survey, , 2007

Descrizione fisica

1 online resource (x, 83 pages) : digital, PDF file

Collana

Professional paper ; ; 1656-C

Altri autori (Persone)

CrandallChristy A

Soggetti

Streamflow - Suwannee River (Ga. and Fla.) - Mathematical models

Streamflow - Florida - Santa Fe River - Mathematical models

Groundwater flow - Suwannee River (Ga. and Fla.) - Mathematical models

Groundwater flow - Florida - Santa Fe River - Mathematical models

Floridan Aquifer

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on July 16, 2007).

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNINA9910715390903321

Autore

Bossong C. R.

Titolo

Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 2 / / by C.R. Bossong ; prepared in cooperation with the Alabama Department of Environmental Management

Pubbl/distr/stampa

Tuscaloosa, Alabama : , : U.S. Geological Survey, , 1989

Descrizione fisica

1 online resource (iv, 22 pages) : color illustrations, color maps + + 1 plate

Collana

Water-resources investigations report ; ; 88-4177

Soggetti

Hydrogeology - Alabama

Groundwater - Pollution - Alabama

Geology - Alabama

Geology

Groundwater - Pollution

Hydrogeology

Alabama Gadsden Region

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Area 2--Blount, Cherokee, DeKalb, Etowah, Jackson, and Marshall Counties"--Page 1.

Nota di bibliografia

Includes bibliographical references (pages 14-15).