1.

Record Nr.

UNINA990006288670403321

Autore

Conrad, Wolfgang

Titolo

Der Offentlichkeitsauftrag der Kirche : eine Untersuchung... / Wolfgang Conrad

Pubbl/distr/stampa

Gottingen : O. Schwartz & Co., 1964

Descrizione fisica

XI,, 142 p. ; 24 cm

Collana

"Gottinger Rechtswissenschaftliche Studien" ; 52

Disciplina

262.9

Locazione

FGBC

Collocazione

COLLEZ. 48 (52)

Lingua di pubblicazione

Non definito

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910686774803321

Autore

Papikian Mihran

Titolo

Drinfeld Modules / / by Mihran Papikian

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023

ISBN

9783031197079

9783031197062

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (541 pages)

Collana

Graduate Texts in Mathematics, , 2197-5612 ; ; 296

Disciplina

512.42

Soggetti

Number theory

Algebra

Geometry, Algebraic

Number Theory

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Preface -- Acknowledgements -- Notation and Conventions -- Chapter 1. Algebraic Preliminaries -- Chapter 2. Non-Archimedean Fields -- Chapter 3. Basic Properties of Drinfeld Modules -- Chapter 4. Drinfeld Modules over Finite Fields -- Chapter 5. Analytic Theory of Drinfeld Modules -- Chapter 6. Drinfeld Modules over Local Fields -- Chapter 7. Drinfeld Modules over Global Fields -- Appendix A. Drinfeld modules for general function rings -- Appendix B. Notes on exercises -- Bibliography -- Index.

Sommario/riassunto

This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.