|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910686483703321 |
|
|
Autore |
Schubert U (Ulrich) |
|
|
Titolo |
An Introduction to Redox Polymers for Energy-Storage Applications / / Ulrich S. Schubert, Andreas Winter, and George R. Newkome |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : WILEY-VCH, , [2023] |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83928-3 |
3-527-84346-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (547 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- List of Abbreviations -- Chapter 1 The Emergence of "Redox Polymers" in the Field of Energy-Storage Applications* -- 1.1 An Introduction to Battery Systems -- 1.2 Redox Polymers: A Short View on Their Long History -- 1.2.1 The First Era of Redox Polymers -- 1.2.2 The Second Era of Redox Polymers -- 1.2.3 The Third Era of Redox Polymers -- References -- Chapter 2 Polymer-Containing Batteries* -- Study Goals -- 2.1 Introduction -- 2.2 Working Principles -- 2.3 Characterization of Energy-Storage Devices -- 2.3.1 Performance Parameters -- 2.3.2 Charging/Discharging Characteristics -- 2.4 Battery Housing -- 2.5 Solid-State Batteries Incorporating Polymers, as Active Materials -- 2.5.1 Working Principle -- 2.5.2 Material Requirements -- 2.6 Capacitors Incorporating Polymers, as Active Materials -- 2.6.1 Historic Development and Working Principle -- 2.6.2 Material Requirements -- 2.7 Redox-Flow Batteries Incorporating Polymers as Active Materials -- 2.7.1 Working Principle -- 2.7.2 Materials Requirements -- 2.7.3 Aqueous pRFBs -- 2.7.4 Organic pRFBs -- 2.7.5 Suspension RFBs -- 2.8 Concluding Remarks -- References -- Chapter 3 Redox Polymers: Architectures, Synthesis, and Characterization* -- Study Goals -- 3.1 Introduction -- 3.2 Polymer Architecture vs. Battery Cell Performance -- 3.3 Polymer Architectures -- 3.3.1 Homopolymers -- 3.3.2 |
|
|
|
|
|
|
|
|
|
Copolymers -- 3.3.2.1 Alternating Copolymers -- 3.3.2.2 Statistical and Gradient Copolymers -- 3.3.2.3 Block Copolymers -- 3.3.3 Miscellaneous Polymer Architectures -- 3.4 Polymerization Methods -- 3.4.1 Step-Growth Polymerizations -- 3.4.2 Chain-Growth Polymerizations -- 3.4.2.1 Free-Radical Polymerization -- 3.4.2.2 Controlled Radical Polymerization -- 3.4.2.3 Anionic Polymerization -- 3.4.2.4 Cationic Polymerizations. |
3.4.2.5 Ring-Opening Metathesis Polymerizations (ROMP) -- 3.4.3 Redox Polymerizations -- 3.5 TEMPO-Containing Redox Polymers: A Case Study on How the Backbone Structure Influences the Polymeric Properties -- 3.6 Characterization of Redox Polymers -- 3.6.1 Cyclic Voltammetry (CV) -- 3.6.2 Electrochemical Impedance Spectroscopy (EIS) -- 3.6.3 Electrochemical Methods Coupled to Other Analytical Techniques -- 3.7 Concluding Remarks -- References -- Chapter 4 Conjugated Polymers in the Context of Energy-Storage Applications -- Study Goals -- 4.1 Introduction -- 4.2 The Classic Conjugated Polymers at a Glance -- 4.2.1 Polyaniline (PAni) -- 4.2.2 Polypyrrole (PPy) -- 4.2.3 Polythiophene (PT) and PEDOT:PSS -- 4.2.4 Conjugated Polymers for Energy-Storage Applications: General Considerations -- 4.3 Conjugated Polymers, as Active Materials for Battery Systems -- 4.3.1 Polyacetylene -- 4.3.2 Polyaniline -- 4.3.3 Polypyrrole -- 4.3.4 Polythiophene, PEDOT, and Related Polymers -- 4.3.5 Beyond the "Big Three": Miscellaneous Conjugated Polymers -- 4.3.5.1 Poly(p-phenylene) -- 4.3.5.2 Polyindole -- 4.4 Concluding Remarks -- References -- Chapter 5 Redox-Active, Sulfur-Containing Polymers -- Study Goals -- 5.1 Introduction -- 5.2 Fundamentals of Sulfur-Containing Batteries -- 5.3 Composite Electrodes Incorporating Sulfur and Conductive Polymers -- 5.3.1 Polypyrrole, as the Matrix Polymer -- 5.3.2 Polyaniline, as the Matrix Polymer -- 5.3.3 Polythiophene, as the Matrix Polymer -- 5.3.4 Miscellaneous Matrix Polymers -- 5.4 Sulfur-Containing Polymers in Battery Applications -- 5.4.1 Polymers Containing Disulfide Moieties -- 5.4.2 Polymers Containing Oligosulfide or Polysulfide Moieties -- 5.4.3 Beyond Sulfides: Polymers Containing Other Redox-Active Organosulfur Moieties -- 5.5 Concluding Remarks -- References. |
Chapter 6 Radical-Containing Polymers for Energy-Storage Applications* -- Study Goals -- 6.1 Introduction -- 6.2 Organic Radical Polymers -- 6.2.1 Free-Radical Moieties Used in ORPs -- 6.2.2 Influence of the Backbone Structure on the ORP Properties -- 6.2.3 Influence of the Polymer Architecture on the ORP Properties -- 6.3 TEMPO-Containing Polymers for Energy-Storage Applications -- 6.3.1 TEMPO-Containing Polymers in Solid-State Batteries -- 6.3.1.1 The Success Story of PTMA -- 6.3.1.2 Beyond PTMA: Polymers with Various Backbone Structures -- 6.3.2 TEMPO-Containing Polymers in Flow-Cell Applications -- 6.4 Beyond TEMPO: Other Nitroxyl Moieties in ORPs -- 6.5 Miscellaneous Free-Radical Moieties in ORPs -- 6.6 Concluding Remarks -- References -- Chapter 7 Polymers Equipped with Redox-Active Quinone Moieties* -- 7.1 Introduction -- 7.2 General Considerations Regarding Carbonyl Compounds, as Active Electrode Materials -- 7.3 Quinone-Containing Polymers for Energy-Storage Applications -- 7.3.1 Polymers with Quinone Moieties Within the Backbone -- 7.3.2 Polymers with Quinone Moieties, as Side Chains -- 7.4 Polyketone-Containing Polymers for Energy-Storage Applications -- 7.5 Polymers, Which Contain Miscellaneous Redox-Active Carbonyl Moieties -- 7.5.1 Side-Chain Polymers, Which Contain Redox-Active Carbonyl Moieties -- 7.5.2 Main-Chain Polymers, Which Contain Redox-Active Carbonyl Moieties -- 7.6 Concluding Remarks -- References -- Chapter 8 Polyimides and Related Polymers in Battery |
|
|
|
|
|
|
|
|
Applications* -- Study Goals -- 8.1 Introduction -- 8.2 Conventional PIs, as Active Materials -- 8.3 Non-conventional PIs, as Active Materials -- 8.3.1 Polyimides with Non-innocent Moieties Within the Spacer -- 8.3.2 Polyimides with Substituents on the Diimide Core -- 8.4 Conjugated Polymers Incorporating the Core of Diimide Moieties -- 8.5 Multidimensional Polyimides. |
8.6 Miscellaneous Polymer Structures Incorporating Redox-Active Imide Moieties -- 8.7 Concluding Remarks -- References -- Chapter 9 Polymers Containing Redox-ActiveViologen-Type Moieties -- 9.1 Introduction -- 9.2 Viologen-Containing Polymers for Solid-State Batteries -- 9.3 Viologen-Containing Polymers for Supercapacitors -- 9.4 Viologen-Containing Polymers for Redox-Flow Batteries -- 9.4.1 Aqueous Redox-Flow Batteries -- 9.4.2 Nonaqueous Redox-Flow Batteries -- 9.5 Concluding Remarks -- References -- Chapter 10 Polymers: Containing Redox-Active N-Heterocyclic Moieties -- 10.1 Introduction -- 10.2 Polymers: Containing Triphenylamine Moieties -- 10.3 Polymers: Containing Redox-Active Carbazole Moieties -- 10.4 Polymers: Containing Redox-Active 5,10-Dihydrophenazine Moieties -- 10.5 Polymers: Containing Redox-Active Phenazine Moieties -- 10.6 Polymers: Containing Redox-Active Phenothiazine or Phenoxazine Moieties -- 10.7 Concluding Remarks -- References -- Chapter 11 Redox-Active Metallopolymers -- Study Goals -- 11.1 Introduction -- 11.2 Applications Related to Redox-Active Metallopolymers -- 11.3 Ferrocene-Containing Polymers for Energy-Storage Applications -- 11.4 Beyond Ferrocene: Other Types of Redox-Active Metallopolymers -- 11.5 Concluding Remarks -- References -- Chapter 12 Students' Section: Representative Exercises on Redox Polymers and Their Usage in Energy-Storage Applications -- 12.1 Introduction -- 12.2 Problems -- References -- Index -- EULA. |
|
|
|
|
|
| |