1.

Record Nr.

UNINA9910684593903321

Autore

Yaseen Mir Mohammad

Titolo

Microbiomics and sustainable crop production / / Mohammad Yaseen Mir and Saima Hamid

Pubbl/distr/stampa

Chichester, England : , : John Wiley & Sons Ltd, , [2023]

©2023

ISBN

1-119-79935-X

1-119-79933-3

Descrizione fisica

1 online resource (339 pages)

Disciplina

630.2086

Soggetti

Crops and soils

Plant-soil relationships

Soil fertility

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- About the Authors -- Chapter 1 Agricultural Microbiomes: Functional and Mechanistic Aspects -- 1.1 Introduction -- 1.2 Model Microbiome-Plant Systems -- 1.2.1 Plant Perception of Microbes -- 1.2.2 Molecular Plant -- 1.2.3 Bacterial Signalling: Quorum Sensing and Symbiosis Factors -- 1.2.4 Hormone Signalling in Microbe-Host Interactions -- 1.2.5 Interactome Network Analysis -- 1.2.6 Transcriptional Regulatory Networks -- 1.2.7 Metabolic Exchanges and Nutrient Competition in the Soil -- 1.2.8 Integrated Multi-omics Modelling -- 1.2.9 From Systems Biology to Crop Protection -- 1.3 Stability, Resilience, and Assembly of Agricultural Microbiomes -- 1.4 Core Plant Microbiome and Metagenome -- 1.5 Interactions Among the Microbes, Environment, and Management -- 1.5.1 Secondary Metabolism -- 1.5.2 Endophyte-Phytopathogen-Plant Interaction -- 1.5.3 Hopanoid -- 1.5.4 Parasitic Interaction -- 1.5.5 Microbial Community's Interaction -- 1.5.6 Siderophore -- 1.5.7 Symbiotic Interaction -- 1.6 Microbiome Innovation in Agriculture: Insect Pest Management -- 1.6.1 Manipulation of Insect-Associated Microbiomes for Pest Management -- 1.6.2 Incompatible Insect Technique (IIT) -- 1.6.3 Paratransgenesis



-- 1.6.4 Exploiting the Chemical Inventories of Microbiomes to Develop New Biopesticides -- 1.6.5 Microbial Insecticides and Plant-Incorporated Protectants -- 1.6.6 Microbial Semiochemicals -- 1.6.7 Combining Microbial-Based Biopesticides with Nanotechnologies -- 1.6.8 Microbial Interventions to Improve Fitness of Mass-Reared Insects for Autocidal Programmes -- References -- Chapter 2 Engineering and Management of Agricultural Microbiomes for Improving Crop Health -- 2.1 Why to Modify Plant Microbiome? -- 2.2 Methods for Detecting Endophytes Within the Plant -- 2.2.1 Media for Isolation of Fungal Endophytes.

2.2.2 Media for Isolation of Bacterial Endophytes -- 2.2.3 Identification of Endophytes -- 2.2.4 Molecular Tools to Identify Endophytes -- 2.2.5 Markers and Primers for Endophyte Identification -- 2.2.6 Techniques to Evaluate Endophyte Distribution in Plants -- 2.2.6.1 Hood and Shew Staining Protocol -- 2.2.6.2 Fluorescent Probes for Localization of Bacterial and Fungal Endophytes -- 2.2.6.3 ROS Staining to Study Bacterial Endophytes -- 2.2.7 Analysis of Endophyte Diversity -- 2.2.8 Non-Culture Methods -- 2.2.9 Metagenomics and Pyrosequencing -- 2.2.10 Microarray: Gene Chips to Study the Expression and Mechanisms of Interaction -- 2.3 Engineering of the Plant Microbiome -- 2.3.1 Host-Mediated and Multi-Generation Microbiome Selection -- 2.3.2 Inoculation into the Soil and Rhizosphere -- 2.3.3 Inoculation into Seeds or Seedlings -- 2.3.4 Tissue Atomization -- 2.3.5 Direct Injection into Tissues or Wounds -- 2.4 In Situ Harnessing of Agricultural Microbiome -- 2.4.1 Recent Advancement in Plant Microbiome Studies -- 2.4.2 Microbial-Based Strategies -- 2.4.3 Biochemical Strategies -- 2.4.4 Molecular Strategies -- 2.5 Future Perspective of Agricultural Microbiome Engineering -- References -- Chapter 3 Approaches and Challenges in Agricultural Microbiome Research -- 3.1 Microbiome Research in the Omics Era -- 3.2 New Efforts and Challenges in Assigning Function to Microbes -- 3.3 Characterization of Complex Microbial Communities -- 3.4 Advanced Fundamental Research on Microbe-Microbe and Plant-Microbe Interactions : Bridging the Lab-Field Gap -- 3.4.1 Bridging the Lab-Field Gap -- 3.4.1.1 Limitations on the Experiments Performed in Controlled Conditions: The Lack of Context -- References -- Chapter 4 Perceptive of Rhizosphere Microbiome -- 4.1 Introduction -- 4.2 Multiple Levels of Selection in the Plant Rhizosphere.

4.2.1 Microbial Experimental Systems and Network Analysis -- 4.2.2 Observing Microbiome Controls over Observed Phenotypes of the Plant Using -Omics Techniques -- 4.2.3 Genome-Editing Techniques to Uncover Plant Host Controls over Microbiome Composition and Function -- 4.2.4 Rhizosphere Engineering and Sustainable Agriculture -- 4.2.5 Engineering Plants -- 4.2.6 Case Study 1: Manipulating Rhizosphere pH -- 4.2.7 Case Study 2: Enhancing Organic Anion Efflux from Roots -- 4.2.8 Approach 1: Engineering Metabolic Pathways for Greater Organic Anion Efflux -- 4.2.9 Approach 2: Engineering Transport Proteins for Greater Organic Anion Efflux -- 4.2.9.1 ALMT Family -- 4.2.9.2 MATE Family -- 4.2.10 Engineering Microbes -- 4.2.11 Strategic Issues for Strain Development -- 4.2.12 PGPR Activity Is Enhanced in Engineered Strains -- 4.2.13 Recombinant Strains and Rhizosphere Competence -- 4.2.14 Non-Target Effects of Wild-Type and Genetically Engineered PGPR -- 4.3 Engineering Microbial Populations and Plant-Microbe Interactions -- 4.4 Emerging Approaches in Rhizoremediation -- 4.4.1 Impact of Rhizosphere Microbiome on Rhizoremediation -- 4.4.2 Current Approaches to Understand the Role of the Microbiome in Rhizoremediation -- 4.4.3 Metagenomics -- 4.4.4 Metatranscriptomics -- 4.4.5 Metaproteomics



-- 4.4.6 Genomics -- 4.5 Heritability of Rhizosphere Microbiome -- 4.6 Future Course of Orientations -- References -- Chapter 5 Microbial Communities in Phyllosphere -- 5.1 Introduction -- 5.2 Diversity of Microbes in Phyllospheric Environment -- 5.2.1 Sources of Microbes Colonizing the Phyllosphere -- 5.2.2 Leaf Characteristics and Environmental Factors Controlling Phyllosphere Microbiology -- 5.3 Microbial Adaptation to the Phyllosphere -- 5.3.1 Plant Genotype and Phyllosphere Microbiology.

5.4 Relationship between Phyllosphere Microbial Communities and Functional Traits of Plants -- 5.5 Metabolic Dynamics of Phyllosphere Microbiota -- 5.6 Impact of Phyllospheric Microorganisms on Plant-Plant, Plant-Insect, and Plant Atmosphere Chemical Exchanges -- 5.7 Quorum Sensing in Phyllosphere -- 5.8 Applications for Phyllosphere Microbiology -- 5.8.1 Biocontrol Agents -- 5.8.2 Plant Growth-Promoting Compounds -- 5.8.3 Biopharmaceutical Importance -- 5.8.4 Other Applications -- 5.8.5 Conclusion and Future Prospects -- References -- Chapter 6 Endosphere and Endophyte Communities -- 6.1 Reproduction and Transmission Modes of Microbes -- 6.2 Vertical Transmission -- 6.2.1 Vertical Transfer via Seeds -- 6.2.2 Vertical Transfer via Pollen -- 6.2.3 Horizontal Transmission -- 6.2.3.1 Colonization of Seed and Root via Soil -- 6.2.4 Endophytic Colonization of the Spermosphere -- 6.2.5 Colonization of the Root Endosphere via the Rhizosphere -- 6.2.6 Entry into Aerial Tissues -- 6.2.7 Aerial Dispersal of the Plant Microbiome -- 6.2.8 Endophytic Leaf Colonization via Stomata -- 6.2.9 Floral Transmission of Bacterial Endophytes -- 6.2.10 Endophyte Transmission by Plant-Feeding Insects -- 6.3 Endophyte Genomes and Metagenomes -- 6.3.1 Genome Analysis -- 6.3.2 Multigenome Analysis -- 6.3.3 Metagenomics -- 6.3.4 Advanced Fundamental Research on Microbe Interactions in the Endosphere -- 6.3.5 Fungal Hyphae as Vehicles for Bacterial Colonization of the Endosphere -- 6.3.6 Bacterial Intrahyphal Colonization -- 6.4 Bacteria and Fungi in Mixed Biofilms in Plants -- 6.5 Conclusion and Future Perspectives -- References -- Chapter 7 Core Microbiomes: For Sustainable Agroecosystems -- 7.1 Core Microbiome for Agriculture: A Taxonomic and Functional Aspect -- 7.1.1 Core Microbiome Identification -- 7.1.2 Functional Core Microbiome.

7.1.3 Conservative Approaches to Core Plant Microbiomes -- 7.2 Core Microorganisms and Priority Effects in Initial Assembly -- 7.2.1 Microbiome Types -- 7.2.2 Priority Effects in Initial Assembly -- 7.2.3 Deploying Core Microorganisms -- 7.2.4 Prioritizing a Core Microbiome over Space -- 7.2.5 Prioritizing a Core Microbiome over Time -- 7.2.6 Neutral Model to Inform Core Taxa That Are Deterministically Assembled -- 7.3 Informatics of Microbial Networks -- 7.3.1 Microbial Networks -- 7.4 Designing Core Microbiomes -- 7.4.1 Criterion for Nominating Core Microorganisms -- 7.4.1.1 Functional Species Recruitment -- 7.4.1.2 Pathogen/Pest Blocking -- 7.4.1.3 Core Reinforcement -- 7.5 Management of Agroecosystems with Core Microbiomes -- 7.5.1 Logistics of Core Microbiomes -- 7.5.2 Portfolios with Multiple Cores -- 7.5.3 Smart Farming with AI and Robots -- References -- Further Reading -- Chapter 8 Microbiome Mediated: Stress Alleviation in Agroecosystems -- 8.1 Effect of Biotic and Abiotic Stresses on Plants -- 8.1.1 Biotic and Abiotic Stresses -- 8.1.2 Biotic Stress -- 8.1.3 Abiotic Stress -- 8.1.4 Water Stress -- 8.1.5 Transpiration -- 8.1.6 Water Loss -- 8.1.7 Temperature Stress -- 8.1.7.1 Chilling Stress -- 8.1.7.2 Freezing Stress -- 8.1.7.3 Heat Stress -- 8.1.7.4 Low-Oxygen Atmosphere and High-Carbon-Dioxide Atmosphere -- 8.1.7.5 Low-Oxygen Atmosphere -- 8.1.7.6 High-



Carbon-Dioxide Atmosphere -- 8.1.7.7 Ethylene and Nonethylene Volatiles -- 8.1.7.8 Light -- 8.1.7.9 Mechanical Stress -- 8.1.7.10 Oxidative Stress -- 8.1.7.11 Mineral Stress -- 8.2 Molecular and Physiological Responses of Plants Against Stresses -- 8.2.1 Morpho-Physiological Responses -- 8.2.2 Molecular Responses -- 8.3 Microbiome Mediated Mitigation of Stress Conditions -- 8.3.1 Improved Understanding of a Microbiome Role in Plant Defence and Immune Systems.

8.3.2 Cry for Help' Strategy for the Applied Plant Stress Probiotics.