1.

Record Nr.

UNINA9910683590603321

Autore

Schumann, Hans

Titolo

Handelsrecht / Hans Schumann

Pubbl/distr/stampa

Wiesbaden, : Dr. Gabler, 1958-1962

Descrizione fisica

3 v. ; 24 cm

Locazione

ECA

EAC

Collocazione

C2-P8-31.1-RA

C2-P8-31.2-RA

C2-P8-31.3-RA

24-5-19-RA.1

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910915687303321

Autore

Lu Guozhen

Titolo

Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2023

©2023

ISBN

1-4704-7321-6

Edizione

[1st ed.]

Descrizione fisica

1 online resource (100 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.281

Classificazione

42B2042B2542B30

Altri autori (Persone)

ShenJiawei

ZhangLu

Disciplina

515/.98

515.98

Soggetti

Hardy spaces

Singular integrals

Littlewood-Paley theory

Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Calderón-Zygmund, etc.)

Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Maximal functions, Littlewood-Paley theory

Harmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Hardy-spaces

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Chapter 1. Introduction -- Acknowledgments -- Chapter 2. Single-parameter theory -- 2.1. Singular integral operators and elementary operators -- 2.2. Discrete Littlewood-Paley-Stein theory and Hardy spaces -- 2.3. Endpoint estimate for one-parameter singular integrals -- Chapter 3. Multi-parameter setting: Product theory -- 3.1. Product singular integral operators -- 3.2. Hardy spaces on the product space -- 3.3. Endpoint estimates on product singular integrals -- Chapter 4. General multi-parameter singular integrals and Hardy spaces -- 4.1. Assumptions for vector fields -- 4.2. Multi-parameter Hardy spaces -- 4.3.  ^{ } boundedness of multi-parameter singular integrals -- Bibliography -- Back Cover.

Sommario/riassunto

"The main purpose of this paper is to establish the theory of the multi-



parameter Hardy spaces Hp (0 [less than] p [less than or equal to] 1) associated to a class of multi-parameter singular integrals extensively studied in the recent book of B. Street (2014), where the Lp (1 [less than] p [less than] [infinity]) estimates are proved for this class of singular integrals. This class of multi-parameter singular integrals are intrinsic to the underlying multi-parameter Carnot-Caratheodory geometry, where the quantitative Frobenius theorem was established by B. Street (2011), and are closely related to both the one-parameter and multi-parameter settings of singular Radon transforms considered by Stein and Street (2011, 2012a, 2012b, 2013). More precisely, Street (2014) studied the Lp (1 [less than] p [less than] [infinity]) boundedness, using elementary operators, of a type of generalized multi-parameter Calderon Zygmund operators on smooth and compact manifolds, which include a certain type of singular Radon transforms. In this work, we are interested in the endpoint estimates for the singular integral operators in both one and multi-parameter settings considered by Street (2014). Actually, using the discrete Littlewood-Paley-Stein analysis, we will introduce the Hardy space Hp (0 [less than] p [less than or equal to] 1) associated with the multi-parameter structures arising from the multi-parameter Carnot-Caratheodory metrics using the appropriate discrete Littlewood-Paley-Stein square functions, and then establish the Hardy space boundedness of singular integrals in both the single and multi-parameter settings. Our approach is much inspired by the work of Street (2014) where he introduced the notions of elementary operators so that the type of singular integrals under consideration can be decomposed into elementary operators"--