1.

Record Nr.

UNINA9910676647403321

Titolo

Handbook of bioplastics and biocomposites engineering applications / / edited by Inamuddin and Tariq Altalhi

Pubbl/distr/stampa

Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Wiley : , : Scrivener Publishing, , [2023]

©2023

ISBN

1-119-16014-6

1-119-16018-9

Edizione

[Second edition.]

Descrizione fisica

1 online resource (683 pages)

Disciplina

620.192323

Soggetti

Biodegradable plastics

Polymeric composites

Biopolymers - Industrial applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Bioplastics, Synthesis and Process Technology -- Chapter 1 An Introduction to Engineering Applications of Bioplastics -- 1.1 Introduction -- 1.2 Classification of Bioplastics -- 1.3 Physical Properties -- 1.3.1 Rheological Properties -- 1.3.2 Optical Properties -- 1.3.3 Mechanical and Thermal Properties -- 1.3.4 Electrical Properties -- 1.4 Applications of Bioplastics in Engineering -- 1.4.1 Bioplastics Applications in Sensors -- 1.4.2 Bioplastics Applications in Energy Sector -- 1.4.3 Bioplastics Applications in Bioengineering -- 1.4.4 Bioplastics Applications in "Green" Electronics -- 1.5 Conclusions -- Acknowledgement -- Dedication -- References -- Chapter 2 Biobased Materials: Types and Sources -- 2.1 Introduction -- 2.2 Biodegradable Biobased Material -- 2.2.1 Polysaccharides -- 2.2.2 Starch -- 2.2.3 Polylactic Acid -- 2.2.4 Cellulose -- 2.2.5 Esters -- 2.2.6 Ether -- 2.2.7 Chitosan -- 2.2.8 Alginate -- 2.2.9 Proteins -- 2.2.10 Gluten -- 2.2.11 Gelatine -- 2.2.12 Casein -- 2.2.13 Lipid -- 2.2.14 Polyhydroxyalkanoates (PHA) -- 2.3 Nonbiodegradable Biobased Material -- 2.3.1 Polyethylene (PE) -- 2.3.2 Polyethylene Terephthalate (PET) -- 2.3.3 Polyamide (PA) -- 2.4 Conclusion -- Acknowledgment --



References -- Chapter 3 Bioplastic From Renewable Biomass -- 3.1 Introduction -- 3.2 Plastics and Bioplastics -- 3.2.1 Plastics -- 3.2.2 Bioplastics -- 3.3 Classification of Bioplastics -- 3.4 Bioplastic Production -- 3.4.1 Biowaste to Bioplastic -- 3.4.1.1 Lipid Rich Waste -- 3.4.2 Milk Industry Waste -- 3.4.3 Sugar Industry Waste -- 3.4.4 Spent Coffee Beans Waste -- 3.4.5 Bioplastic Agro-Forestry Residue -- 3.4.6 Bioplastic from Microorganism -- 3.4.7 Biomass-Based Polymers -- 3.4.7.1 Biomass-Based Monomers for Polymerization Process -- 3.5 Characterization of Bioplastics.

3.6 Applications of Bioplastics -- 3.6.1 Food Packaging -- 3.6.2 Agricultural Applications -- 3.6.3 Biomedical Applications -- 3.7 Bioplastic Waste Management Strategies -- 3.7.1 Recycling of Poly(Lactic Acid ) (PLA) -- 3.7.1.1 Mechanical Recycling of PLA -- 3.7.1.2 Chemical Recycling of PLA -- 3.7.2 Recycling of Poly Hydroxy Alkanoates (PHAs) -- 3.7.3 Landfill -- 3.7.4 Incineration -- 3.7.5 Composting -- 3.7.6 Anaerobic Digestion -- 3.7.6.1 Anaerobic Digestion of Poly(Hydroxyalkanoates) -- 3.7.6.2 Anaerobic Digestion of Poly(Lactic Acid) -- 3.8 Conclusions and Future Prospects -- References -- Chapter 4 Modeling of Natural Fiber-Based Biocomposites -- 4.1 Introduction -- 4.2 Generality of Biocomposites -- 4.2.1 Natural Matrix -- 4.2.2 Natural Reinforcement -- 4.2.3 Natural Fiber Classification -- 4.2.4 Biocomposites Processing -- 4.2.4.1 Extrusion and Injection -- 4.2.4.2 Compression Molding -- 4.2.5 RTM-Resin Transfer Molding -- 4.2.6 Hand Lay-Up Technique -- 4.3 Parameters Affecting the Biocomposites Properties -- 4.3.1 Fiber's Aspect Ratio -- 4.3.2 Fiber/Matrix Interfacial Adhesion -- 4.3.3 Fibers Orientation and Dispersion -- 4.3.3.1 Short Fibers Orientation -- 4.3.3.2 Fiber's Orientation in Simple Shear Flow -- 4.3.3.3 Fiber's Orientation in Elongational Flow -- 4.4 Process Molding of Biocomposites -- 4.4.1 Unidirectional Fibers -- 4.4.1.1 Classical Laminate Theory -- 4.4.1.2 Rule of Mixture -- 4.4.1.3 Halpin-Tsai Model -- 4.4.1.4 Hui-Shia Model -- 4.4.2 Random Fibers -- 4.4.2.1 Hirsch Model -- 4.4.2.2 Self-Consistent Approach (Modified Hirsch Model) -- 4.4.2.3 Tsai-Pagano Model -- 4.5 Conclusion -- References -- Chapter 5 Process Modeling in Biocomposites -- 5.1 Introduction -- 5.2 Biopolymer Composites -- 5.2.1 Natural Fiber-Based Biopolymer Composites -- 5.2.2 Applications of Biopolymer Composites -- 5.2.3 Properties of Biopolymer Composites.

5.3 Classification of Biocomposites -- 5.3.1 PLA Biocomposites -- 5.3.2 Nanobiocomposites -- 5.3.3 Hybrid Biocomposites -- 5.3.4 Natural Fiber-Based Composites -- 5.4 Process Modeling of Biocomposite Models -- 5.4.1 Compression Moulding -- 5.4.2 Injection Moulding -- 5.4.3 Extrusion Method -- 5.5 Formulation of Models -- 5.5.1 Types of Model -- 5.6 Conclusion -- References -- Chapter 6 Microbial Technology in Bioplastic Production and Engineering -- 6.1 Introduction -- 6.2 Fundamental Principles of Microbial Bioplastic Production -- 6.3 Bioplastics Obtained Directly from Microorganisms -- 6.3.1 PHA -- 6.3.2 Poly (ƒÁ-Glutamic Acid) (PGA) -- 6.4 Bioplastics from Microbial Monomers -- 6.4.1 Bioplastics from Aliphatic Monomers -- 6.4.1.1 PLA -- 6.4.1.2 Poly (Butylene Succinate) -- 6.4.1.3 Biopolyamides (Nylons) -- 6.4.1.4 1, 3-Propanediol (PDO) -- 6.4.2 Bioplastics from Aromatic Monomers -- 6.5 Lignocellulosic Biomass for Bioplastic Production -- 6.6 Conclusion -- References -- Chapter 7 Synthesis of Green Bioplastics -- 7.1 Introduction -- 7.2 Bioplastic -- 7.2.1 Polyhydroxyalkanoates (PHAs) -- 7.2.2 Poly(lactic acid) (PLA) -- 7.2.3 Cellulose -- 7.2.4 Starch -- 7.3 Renewable Raw Material to Produce Bioplastic -- 7.3.1 Raw Material from Agriculture -- 7.3.2 Organic Waste as Resources for Bioplastic Production -- 7.3.3 Algae as



Resources for Bioplastic Production -- 7.3.4 Wastewater as Resources for Bioplastic Production -- 7.4 Bioplastics Applications -- 7.4.1 Food Industry -- 7.4.2 Agricultural Applications -- 7.4.3 Medical Applications -- 7.4.4 Other Applications -- 7.5 Conclusions -- References -- Chapter 8 Natural Oil-Based Sustainable Materials for a Green Strategy -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Entropy Methodology -- 8.2.2 Copras Methodology -- 8.3 Conclusions -- References.

Part II: Applications of Bioplastics in Health and Hygiene -- Chapter 9 Biomedical Applications of Bioplastics -- 9.1 Introduction -- 9.2 Synthesis of Bioplastics -- 9.2.1 Starch-Based Bioplastics -- 9.2.2 Cellulose-Based Bioplastics -- 9.2.3 Chitin and Chitosan -- 9.2.4 Polyhydroxyalkanoates (PHA) -- 9.2.5 Polylactic Acid (PLA) -- 9.2.6 Bioplastics from Microalgae -- 9.3 Properties of Bioplastics -- 9.3.1 Material Strength -- 9.3.2 Electrical, Mechanical, and Optical Behavior of Bioplastic -- 9.4 Biological Properties of Bioplastics -- 9.5 Biomedical Applications of Bioplastics -- 9.5.1 Antimicrobial Property -- 9.5.2 Biocontrol Agents -- 9.5.3 Pharmaceutical Applications of Bioplastics -- 9.5.4 Implantation -- 9.5.5 Tissue Engineering Applications -- 9.5.6 Memory Enhancer -- 9.6 Limitations -- 9.7 Conclusion -- References -- Chapter 10 Applications of Bioplastics in Hygiene Cosmetic -- 10.1 Introduction -- 10.2 The Need to Find an Alternative to Plastic -- 10.3 Bioplastics -- 10.3.1 Characteristic of Bioplastics -- 10.3.2 Types (Classification) -- 10.3.3 Uses of Bioplastics -- 10.4 Resources of Bioplastic -- 10.4.1 Polysaccharides -- 10.4.2 Starch or Amylum -- 10.4.3 Cellulose -- 10.4.3.1 Source of Cellulose -- 10.5 Use of Biodegradable Materials in Packaging -- 10.6 Bionanocomposite -- 10.7 Hygiene Cosmetic Packaging -- 10.8 Conclusion -- References -- Chapter 11 Biodegradable Polymers in Drug Delivery -- 11.1 Introduction -- 11.2 Biodegradable Polymer (BP) -- 11.2.1 Natural -- 11.2.1.1 Polysaccharides -- 11.2.1.2 Proteins -- 11.2.2 Synthetic -- 11.2.2.1 Polyesters -- 11.2.2.2 Polyanhydrides -- 11.2.2.3 Polycarbonates -- 11.2.2.4 Polyphosphazenes -- 11.2.2.5 Polyurethanes -- 11.3 Device Types -- 11.3.1 Three-Dimensional Printing Devices -- 11.3.1.1 Implants -- 11.3.1.2 Tablets -- 11.3.1.3 Microneedles -- 11.3.1.4 Nanofibers -- 11.3.2 Nanocarriers.

11.3.2.1 Nanoparticles -- 11.3.2.2 Dendrimers -- 11.3.2.3 Hydrogels -- 11.4 Applications -- 11.4.1 Intravenous -- 11.4.2 Transdermal -- 11.4.3 Oral -- 11.4.4 Ocular -- 11.5 Existing Materials in the Market -- 11.6 Conclusions and Future Projections -- References -- Chapter 12 Microorganism-Derived Bioplastics for Clinical Applications -- 12.1 Introduction -- 12.2 Types of Bioplastics -- 12.2.1 Poly(3-hydroxybutyrate) (PHB) -- 12.2.2 Polyhydroxyalkanoate -- 12.2.3 Poly-Lactic Acid -- 12.2.4 Poly Lactic-co-Glycolic Acid (PLGA) -- 12.2.5 Poly (.-caprolactone) (PCL) -- 12.3 Properties of Bioplastics -- 12.3.1 Physiochemical, Mechanical, and Biological Properties of Bioplastics -- 12.3.1.1 Polylactic Acid -- 12.3.1.2 Poly Lactic-co-Glycolic Acid -- 12.3.1.3 Polycaprolactone -- 12.3.1.4 Polyhydroxyalkanoates -- 12.3.1.5 Polyethylene Glycol (PEG) -- 12.4 Applications -- 12.4.1 Tissue Engineering -- 12.4.2 Drug Delivery System -- 12.4.3 Implants and Prostheses -- 12.5 Conclusion -- References -- Chapter 13 Biomedical Applications of Biocomposites Derived From Cellulose -- 13.1 Introduction -- 13.2 Importance of Cellulose in the Field of Biocomposite -- 13.3 Classification of Cellulose -- 13.4 Synthesis of Cellulose in Different Form -- 13.4.1 Mechanical Extraction -- 13.4.2 Electrochemical Method -- 13.4.3 Chemical Extraction -- 13.4.4 Enzymatic Hydrolysis -- 13.4.5 Bacterial Production of Cellulose -- 13.5 Formation of Biocomposite Using Different Form of Cellulose --



13.6 Biocomposites Derived from Cellulose and Their Application -- 13.6.1 Tissue Engineering -- 13.6.2 Wound Dressing -- 13.6.3 Drug Delivery -- 13.6.4 Dental Applications -- 13.6.5 Other Applications -- 13.7 Conclusion -- References -- Chapter 14 Biobased Materials for Biomedical Engineering -- 14.1 Introduction -- 14.2 Biomaterials.

14.3 Biobased Materials for Implants and Tissue Engineering.