1.

Record Nr.

UNINA9910645887403321

Autore

Sogabe Tomohiro

Titolo

Krylov Subspace Methods for Linear Systems : Principles of Algorithms / / by Tomohiro Sogabe

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022

ISBN

9789811985324

9789811985317

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (233 pages)

Collana

Springer Series in Computational Mathematics, , 2198-3712 ; ; 60

Disciplina

518.1

Soggetti

Numerical analysis

Mathematical models

Algorithms

Numerical Analysis

Mathematical Modeling and Industrial Mathematics

Sistemes lineals

Anàlisi numèrica

Algorismes

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Introduction to Numerical Methods for Solving Linear Systems -- Some Applications to Computational Science and Data Science -- Classification and Theory of Krylov Subspace Methods -- Applications to Shifted Linear Systems -- Applications to Matrix Functions.

Sommario/riassunto

This book focuses on Krylov subspace methods for solving linear systems, which are known as one of the top 10 algorithms in the twentieth century, such as Fast Fourier Transform and Quick Sort (SIAM News, 2000). Theoretical aspects of Krylov subspace methods developed in the twentieth century are explained and derived in a concise and unified way. Furthermore, some Krylov subspace methods in the twenty-first century are described in detail, such as the COCR method for complex symmetric linear systems, the BiCR method, and the IDR(s) method for non-Hermitian linear systems. The strength of



the book is not only in describing principles of Krylov subspace methods but in providing a variety of applications: shifted linear systems and matrix functions from the theoretical point of view, as well as partial differential equations, computational physics, computational particle physics, optimizations, and machine learning from a practical point of view. The book is self-contained in that basic necessary concepts of numerical linear algebra are explained, making it suitable for senior undergraduates, postgraduates, and researchers in mathematics, engineering, and computational science. Readers will find it a useful resource for understanding the principles and properties of Krylov subspace methods and correctly using those methods for solving problems in the future.