1.

Record Nr.

UNINA9910634048503321

Titolo

Neurogenetics : current topics in cellular and developmental neurobiology / / edited by Boris Egger

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2023]

©2023

ISBN

9783031077937

9783031077920

Descrizione fisica

1 online resource (215 pages)

Collana

Learning Materials in Biosciences

Disciplina

745.05

Soggetti

Neurogenetics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- 1 Introduction to Neurogenetics -- 1.1 Definitions of Neurogenetics -- 1.2 Instrumental Versus Analytical Neurogenetics -- 1.3 History of Neurogenetics -- 1.4 Model Systems in Neurogenetics -- 1.4.1 Caenorhabditis elegans -- 1.4.2 Drosophila melanogaster -- 1.4.3 Vertebrate Animal Models -- 1.4.4 Human (Homo sapiens) -- References -- Further Reading -- 2 Neurogenetic Analysis in Caenorhabditis elegans -- 2.1 C. elegans Model for Neurobiology -- 2.1.1 A Powerful Genetic Model -- 2.1.2 Evolutionary Conservation of Neuronal Genes -- 2.1.3 The Architecture of the C. elegans Nervous System -- 2.1.4 The C. elegans Synaptic Connectome -- 2.1.5 C. elegans Behavioral Repertoire -- 2.1.6 Major Strengths of the Model -- 2.2 Experimental Approaches for the Neurogenetic Analysis of Genes and Neural Circuits in C. elegans -- 2.2.1 Genetic Screens -- 2.2.1.1 Mutagenesis Screen -- 2.2.1.2 Large-Scale RNAi Screen -- 2.2.2 Transgenic Approaches in C. elegans -- 2.2.2.1 Transgenesis in C. elegans -- 2.2.2.2 How to Target the Expression of a Transgene in a Specific Neuron Type -- 2.2.3 Gene Expression Analysis in the Nervous System -- 2.2.3.1 Gene Expression Analysis with Reporter -- 2.2.3.2 Neuron-specific Transcriptomics -- 2.2.3.3 Single-Cell RNA-seq to Learn About Every Cell Type in a Single Analysis -- 2.2.4 Gene Functional Analysis in the Nervous System -- 2.2.5 Circuit Functional Analysis -- 2.2.5.1 Monitoring Neuronal Activity --



2.2.5.2 Upregulating Neuronal Activity -- 2.2.5.3 Downregulating Neuron Activity -- 2.3 Perspectives on Nervous System Function Analyses in C. elegans -- 2.3.1 Application of State-of-the-art Methods to Better Understand the Function of Gene, Neuron, Circuit, and Behavior -- 2.3.2 Integration of Multiple Methods to Bridge the Function of Genes, Neurons, and Circuits to Behavior.

2.3.3 Development of Cost-Effective Novel Neurogenetic Tools -- 2.3.3.1 Gene Function -- 2.3.3.2 Neuron Function -- 2.3.3.3 Circuit Architecture and Function -- 2.3.4 Translational Prospects -- References -- (Owing to space limitations, the authors apologize that many articles that significantly contributed to C. elegans neurogenetics could not be cited.) -- 3 Regionalization of the Early Nervous System -- 3.1 Introduction -- 3.1.1 A Morphological Perspective -- 3.1.2 Neural Dorsoventral Patterning -- 3.1.2.1 Morphogenetic Gradients: Sog/Chordin and Dpp/BMP4 -- 3.1.2.2 Columnar Genes: vnd/Nkx, ind/Gsh, and msh/Msx -- 3.1.3 Anteroposterior Organization of the Developing Brain -- 3.1.3.1 Cephalic Gap Genes Specify the Anterior Brain Territories -- 3.1.3.2 Homeotic Selector (Hox) Genes Specify Posterior Hindbrain Neuromeres -- 3.1.3.3 Tripartite Organization of the Urbilaterian Brain -- References -- 4 Early Neurogenesis and Gliogenesis in Drosophila -- 4.1 Introduction -- 4.2 Embryonic Neurogenesis in the Drosophila CNS -- 4.2.1 Neural Competence and Proneural Genes -- 4.2.2 Lateral Inhibition: Proneural Genes and Notch Signalling -- 4.2.3 Spatio-temporal Generation of Neuroblast Progeny -- 4.3 Gliogenesis in Drosophila -- 4.4 The GAL4-UAS System -- References -- 5 Neural Stem Cells and Brain Tumour Models in Drosophila -- 5.1 Introduction -- 5.2 Symmetric and Asymmetric Stem Cell Divisions -- 5.3 Polarity Cues Direct the Asymmetric Segregation of Cell-Fate Determinants -- 5.3.1 Mechanisms to Orient the Cell Division Axis -- 5.3.2 Proliferation and Termination of Neural Precursors -- 5.3.2.1 Type IA and Type ID Neuroblasts -- 5.3.2.2 Type II Neuroblasts -- 5.3.2.3 Mushroom Body Neuroblasts -- 5.3.2.4 Optic Lobe Neural Precursors -- 5.3.3 Techniques to Study Tumour Suppressor Gene and Oncogene Function in Genetic Mosaics.

5.3.4 Mosaic Analysis with a Repressible Cell Marker (MARCM) -- 5.3.5 Mosaic Analysis with Flip-Out Clones -- 5.4 Brain Tumours Derived from Neuroblasts -- 5.4.1 Examples of Tumour Suppressor Genes Affecting Neuroblast Proliferation -- 5.4.2 Examples of Oncogenes Affecting Neuroblast Proliferation -- 5.4.2.1 atypical Proteinkinase C (aPKC) -- 5.4.2.2 Notch (N) -- 5.4.3 Misregulated Spindle Orientation Can Result in Neuroblast Overproliferation -- 5.5 Brain Tumours Derived from Neuroepithelial Cells -- 5.6 Models for Metastasis in Drosophila -- References -- 6 Eye Development in Drosophila: From Photoreceptor Specification to Terminal Differentiation -- 6.1 Drosophila as a Model Organism to Understand Eye Development -- 6.2 Morphology of the Drosophila Compound Eye -- 6.3 Determination of Eye and Antennal Fate in the Eye-Antennal Imaginal Disc -- 6.4 The Retinal Determination Cascade -- 6.5 Morphogenetic Furrow -- 6.6 Initiation of the Morphogenetic Furrow -- 6.7 Specification of R8 Photoreceptor Neuron -- 6.8 Recruitment of R1-R7 Photoreceptor Neurons -- 6.9 Initiation of Terminal Differentiation and Photoreceptor Subtype Specification -- 6.10 Specification of Inner Versus Outer Photoreceptor Subtypes -- 6.11 Stochastic Determination of Yellow Versus Pale Ommatidia -- 6.12 Specification of Photoreceptors in the Dorsal Rim Area (DRA) -- References -- 7 Neurogenetics of Memory, Learning, and Forgetting -- 7.1 Learning Is Essential for Survival -- 7.1.1 Non-associative Learning -- 7.1.1.1 Two Types of Non-associative Learning -- 7.1.1.2 Insights from Humans and Model



Organisms: How Are Memories Stored in Nerve Cells? -- 7.1.1.3 Simple Behaviors can be Studied in Aplysia -- 7.1.1.4 Habituation in Invertebrates: Insights from Aplysia -- 7.1.1.5 Sensitization in Invertebrates: Insights from Aplysia -- 7.1.2 Associative Learning.

7.1.2.1 Pavlov's Associative Learning Experiments -- 7.1.2.2 Associative Learning in Aplysia -- 7.1.2.3 Associative Learning in Drosophila -- 7.1.2.4 Operant Conditioning: A Way of Associative Learning -- 7.2 Memory -- 7.2.1 Explicit Memory -- 7.2.2 Implicit Memory -- 7.3 Mechanisms of Learning and Memory -- 7.3.1 Cellular Mechanisms -- 7.3.1.1 The Case of Henry Molaison -- 7.3.1.2 The Hippocampus as a Learning Center -- 7.3.1.3 Long-Term Potentiation as a Mechanism to Store Memories -- 7.3.1.4 Drosophila: A Model Organism to Map Neurons -- 7.3.1.5 Drosophila's Odor Learning Circuit -- 7.3.1.6 UAS-Gal4: A Binary Transcriptional System -- 7.3.1.7 The Mushroom Body Is the Fly's Central Structure for Learning -- 7.3.1.8 Shibire to Block Synaptic Transmission -- 7.3.1.9 The MB Synaptic Output Is Not Required During Memory Acquisition But It Is Necessary During Retrieval -- 7.3.2 Molecular Mechanisms -- 7.3.2.1 Seymour Benzer: Identifying Drosophila Melanogaster Learning Mutants -- 7.3.2.2 Drosophila Learning and Memory Genes -- 7.3.2.3 Molecular Mechanisms in Aplysia: Short-Term and Long-Term Sensitization -- 7.3.2.4 Enhancement Synaptic Efficacy -- 7.4 Forgetting -- 7.4.1 Active Forgetting Pathways -- References -- 8 Evolution and Origins of Nervous Systems -- 8.1 Basic Concepts of Evolution -- 8.1.1 Terminology and Representation of Evolutionary Relationships -- 8.1.2 Evo-Devo: A Set of Comparative Methods to Uncover Characteristics of Common Ancestors -- 8.2 Origin of Neurons and Synapses -- 8.2.1 The Evolution of Neurosecretory Proteins Predates the Emergence of Animals -- 8.2.2 Placozoans Are Animals Without Neurons but with Cells That Share Homologies with Synapses -- 8.2.3 Determining the Earliest-Branching Clade Is Crucial to Understand Evolution of Neurons -- 8.3 The Nerve Nets of Cnidarians.

8.4 Centralization of the Nervous System in Bilaterians -- 8.4.1 The Study of Expression Domains Across Species Can Provide Information About CNS Origins -- 8.4.2 -- References -- 9 Embryonic Neurogenesis in the Mammalian Brain -- 9.1 Molecular and Cellular Mechanisms of Neural Development -- 9.1.1 Symmetric Versus Asymmetric Neural Stem Cell Division Modes -- 9.1.2 Proneural Genes in Vertebrate Nervous System Development -- 9.1.3 Notch Signalling in Vertebrate Nervous System Development -- 9.1.4 Oscillation of Hes and Proneural Factors -- 9.1.5 Cross-Regulation Between the Cell Cycle and Cell Fate -- 9.1.6 Spatiotemporal Generation of Postmitotic Neurons -- 9.2 Neural Stem Cell and Progenitor Cell Types in the Neocortex -- 9.2.1 Lissencephalic and Gyrencephalic Brains -- 9.2.2 Populations of Stem and Progenitor Cell Types in the Neocortex -- 9.2.2.1 Neuroepithelial Cells -- 9.2.2.2 Apical Radial Glial Cells (aRG) and Apical Intermediate Progenitors (aIP) -- 9.2.2.3 Basal Radial Glial Cells (bRG) and Basal Intermediate Progenitors (bIP) -- 9.2.3 Cellular Mechanisms of Neocortex Expansion -- References -- 10 Models of Neurodegenerative Diseases -- 10.1 Introduction -- 10.1.1 Alzheimer's Disease (AD) -- 10.1.1.1 Models of Alzheimer's Disease -- 10.1.2 Parkinson's Disease (PD) -- 10.1.2.1 Models of Parkinson's Disease -- 10.1.3 Amyotrophic Lateral Sclerosis (ALS) -- 10.1.3.1 Models of Amyotrophic Lateral Sclerosis -- 10.2 Use of Non-rodent Model Organisms in Neurodegenerative Disease -- 10.3 Use of iPSCs to Model Neurodegenerative Diseases -- References -- Index.