|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910633928903321 |
|
|
Autore |
Alvo Mayer |
|
|
Titolo |
Statistical inference and machine learning for big data / / Mayer Alvo |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9783031067846 |
9783031067839 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (442 pages) |
|
|
|
|
|
|
Collana |
|
Springer series in the data sciences |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Big data |
Machine learning |
Mathematical statistics |
Dades massives |
Aprenentatge automàtic |
Estadística matemàtica |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Acknowledgments -- Contents -- List of Acronyms -- List of Nomenclatures -- List of Figures -- List of Tables -- I. Introduction to Big Data -- 1. Examples of Big Data -- 1.1. Multivariate Data -- 1.2. Categorical Data -- 1.3. Environmental Data -- 1.4. Genetic Data -- 1.5. Time Series Data -- 1.6. Ranking Data -- 1.7. Social Network Data -- 1.8. Symbolic Data -- 1.9. Image Data -- II. Statistical Inference for Big Data -- 2. Basic Concepts in Probability -- 2.1. Pearson System of Distributions -- 2.2. Modes of Convergence -- 2.3. Multivariate Central Limit Theorem -- 2.4. Markov Chains -- 3. Basic Concepts in Statistics -- 3.1. Parametric Estimation -- 3.2. Hypothesis Testing -- 3.3. Classical Bayesian Statistics -- 4. Multivariate Methods -- 4.1. Matrix Algebra -- 4.2. Multivariate Analysis as a Generalization of Univariate Analysis -- 4.2.1. The General Linear Model -- 4.2.2. One Sample Problem -- 4.2.3. Two-Sample Problem -- 4.3. Structure in Multivariate Data Analysis -- 4.3.1. |
|
|
|
|