1.

Record Nr.

UNINA9910633913503321

Titolo

Optical polymer waveguides : from the design to the final 3D-opto mechatronic integrated device / / edited by Jörg Franke, [and six others]

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-030-92854-3

Descrizione fisica

1 online resource (283 pages)

Disciplina

410.5

Soggetti

Optical fibers

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- Preface -- Contents -- 1 Current Development in the Field of Optical Short-Range Interconnects -- 1.1 Advantages of Optical Communication -- 1.2 3D-Opto-MID for Optical Bus Systems -- 1.2.1 Short-range optical waveguides networks -- 1.2.2 Optical bus systems -- 1.2.3 Current development in the field of 3D-Opto-MID -- 1.3 New Approach for Additive Manufactured 3D-Opto-MID -- References -- 2 Computer-Aided Design of Electro-Optical Assemblies -- Abstract -- 2.1 Demand on Software-Based Design Tools for Spatial Optoelectronics -- 2.2 State of the Art in the Design of Electro-optical Circuits and MID -- 2.2.1 General Procedures for Electronic and Electro-optical Assemblies -- 2.2.2 Electronics Design Process -- 2.2.3 Procedure for Spatial Electronic Assemblies (3D-MID) -- 2.2.4 Procedure in electro-optical design -- 2.2.5 Evaluation -- 2.3 Need for Action for the Computer-aided Modeling of 3D-Opto-MID -- 2.3.1 General Functional Requirements for a 3D Optomechatronic CAD System -- 2.3.2 General Aspects -- 2.3.2.1 Aspects of Design -- 2.3.2.2 Aspects Resulting from Manufacturing -- 2.3.2.3 Aspects of Software Systems -- 2.3.3 Summary -- 2.4 Concept of a Cross-domain Methodology for Optomechatronic Components -- 2.4.1 Considerations for the Design and Workflow of a Computer-aided 3D-Opto-MID System -- 2.4.2 Integration of Optical Functionalities in a 3D-OMCAD System -- 2.5 Prototypical Integration of Optomechatronic



Functions into a 3D-Opto-MID Design System -- 2.5.1 Circuit Carrier and Substrate Modeling -- 2.5.2 Synthesis of Circuits -- 2.5.3 Waveguide Modeling, Routing Optimization and Wiring -- 2.5.3.1 Manual Routing -- 2.5.3.2 Automatic Routing -- 2.5.4 Design Rule Checks -- 2.5.5 Interface to Optical Simulation -- References -- 3 Three-Dimensional Simulations of Optical Multimode Waveguides -- 3.1 Demands on the Simulation.

3.2 Geometric Optical Simulation -- 3.2.1 State of the art for Raytracing -- 3.2.2 Mathematical Properties for the Description of a POW -- 3.2.3 Algorithm for Arbitrary Cross sections -- 3.2.4 Impact of Manufacturing Parameters on the Optical Properties -- 3.3 Physical Optical Simulation -- 3.3.1 State of the art for Wave Propagation Method (WPM) -- 3.3.2 Impact of Periodicity of Discrete Fourier Transform -- 3.3.3 Simulation of Waveguides -- References -- 4 Conditioning of Flexible Substrates for the Application of Optical Waveguides -- 4.1 Wetting Control by Conditioning -- 4.1.1 Wetting and Capillarity -- 4.1.2 Wetting Control by Changing the Chemical Properties -- 4.2 State of the art for Functional Flexographic Printing -- 4.2.1 Applications -- 4.2.2 Flexographic Printing Process -- 4.3 Selection and Design of the Printing Form -- 4.4 Characterization and Selection of the Materials -- 4.4.1 Selection of the Printing Varnish -- 4.4.2 Selection of the Substrate Material -- 4.5 Experimental Studies of the Conditioning Line Printing Process -- 4.5.1 Experimental Setup -- 4.5.2 Automated Evaluation of Geometric Quality -- 4.5.3 Geometry of the Conditioning Lines -- 4.5.4 Formation of Edge Ripples and Topography -- 4.6 Modeling of Stamp Deformation in the Printing Process -- 4.7 Manufacturing Three-Dimensional Optical Interconnects -- 4.7.1 Studies on the Thermoforming of Conditioned Film Substrates -- 4.8 Surface Functionalization for Wetting Behavior Adjustment of Flexographic Printing Forms -- 4.8.1 Functionalization by Laser-Induced Microstructures -- 4.8.2 Functionalization by Coating Mechanisms -- 4.8.3 Functionalization by Chemical Modification -- 4.8.4 Application of Functionalization Mechanisms on Flexographic Printing Forms and its Impact on the Printing Results -- 4.8.5 Impact of the Functionalization on the Printing Results -- References.

5 Aerosol Jet Printing of Polymer Optical Waveguides -- 5.1 State-of-the-Art Fabrication of the Polymer Optical Waveguide -- 5.1.1 Photolithography -- 5.1.2 Photolysis -- 5.1.3 Photolocking -- 5.1.4 Photobleaching -- 5.1.5 Reactive Ion Etching (RIE) -- 5.1.6 Laser Ablation -- 5.1.7 Dispense Printing -- 5.1.8 Mosquito Method -- 5.1.9 Inkjet Printing -- 5.1.10 Aerosol Jet Printing -- 5.2 Polymer Optical Waveguides Fabrication Through Aerosol Jet Printing -- 5.2.1 Principles of Aerosol Jet Printing -- 5.2.2 Selection of Polymer Optical Material for Aerosol Jet Printing Process -- 5.2.3 Effect of the Material Temperature on the Mass Flow Output -- 5.3 Fabrication Process Steps -- 5.3.1 Motion3D: CADCAM Design and NC Code Generation -- 5.3.2 Remote-NC: 5-Axes Kinematic System -- 5.3.3 AJP Process Parameter -- 5.4 Theoretical AJ Printed Polymer Optical Waveguide Geometry -- 5.5 Strategies in Aerosol Jet Printed Polymer Optical Waveguide -- 5.5.1 Single-layer Printing: Immediate UV Curing Process -- 5.5.2 Multi-layer Printing: Immediate UV Curing Process -- 5.5.3 Multi-layer Printing: UV Curing After the Complete Layer Printing -- 5.6 Qualification and Characterization of the Printed Polymer Optical Waveguide -- 5.6.1 Geometrical Properties -- 5.6.2 Profile Dimension -- 5.6.3 Effect of the Surface Roughness and Waviness -- 5.7 Morphology Analysis -- 5.7.1 Overspray -- 5.7.2 Waviness -- 5.7.3 Impurities -- 5.7.4 Bulging -- 5.7.5 Bubble or Air Pocket -- 5.8 Mechanical and Optical Properties of the Printed Polymer Optical Waveguide -- 5.8.1 Hot-Pin-Pull Test --



5.8.2 Shear Force Test -- 5.8.3 Lifetime Performance Test -- 5.8.4 Optical Quality -- 5.9 Modeling and Simulation Analysis of the Aerosol Jet Printhead -- 5.9.1 Modeling and Operational Principles -- 5.9.2 Simulation Results Analysis -- 5.10 Summary -- References.

6 3D-Opto-MID Coupling Concept Using Printed Waveguides -- 6.1 Coupling Strategies for Large-Scale Optical Networks -- 6.1.1 Demands for Optical Bus Coupling -- 6.1.2 State of the Art for Optical Bus Couplers -- 6.1.3 Theoretical Basis for the Asymmetric Optical Bus Coupler -- 6.2 Simulation of the Asymmetric Optical Bus Coupler -- 6.2.1 Parameters for the Mathematical Model of the Bus Coupler -- 6.2.2 2D Simulation -- 6.2.3 3D Parameter Extension -- 6.2.4 3D Simulation -- 6.3 Performance of the Asymmetric Optical Bus Coupler -- 6.3.1 Measurement Setup -- 6.3.2 Coupling Results -- 6.3.3 Data Transmission via the Asymmetric Optical Bus Coupler -- 6.3.4 Long-Term Stability of the AOBC -- 6.4 Technologies for Three-Dimensional Electro-Optical Interconnects -- 6.4.1 Packaging Demands and State-Of-The-Art for 3D-Opto-MID -- 6.4.2 Polymer-Ceramic Hybrid Assembly for 3D-Opto-MID -- 6.4.3 Long-Term Stability of the 3D-Opto-MID -- References -- 7 Feasibility of Printed Optical Waveguides Over the Entire Process Chain by OPTAVER.