| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991000941189707536 |
|
|
Autore |
Cromer, Evelyn Baring <1841-1917 > |
|
|
Titolo |
Modern Egypt / by the Earl of Cromer |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : The Macmillan company, 1908 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Egitto 1876-1892 |
Sudan 1882-1907 |
Egitto Occupazione inglese 1882-1892 |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910633910303321 |
|
|
Autore |
Dimitrakakis Christos |
|
|
Titolo |
Decision Making Under Uncertainty and Reinforcement Learning : Theory and Algorithms / / by Christos Dimitrakakis, Ronald Ortner |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2022.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (251 pages) |
|
|
|
|
|
|
Collana |
|
Intelligent Systems Reference Library, , 1868-4408 ; ; 223 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Computational intelligence |
Artificial intelligence |
Computational Intelligence |
Artificial Intelligence |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Subjective probability and utility -- Decision problems -- Estimation. . |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents recent research in decision making under uncertainty, in particular reinforcement learning and learning with expert advice. The core elements of decision theory, Markov decision processes and reinforcement learning have not been previously collected in a concise volume. Our aim with this book was to provide a solid theoretical foundation with elementary proofs of the most important theorems in the field, all collected in one place, and not typically found in introductory textbooks. This book is addressed to graduate students that are interested in statistical decision making under uncertainty and the foundations of reinforcement learning. . |
|
|
|
|
|
|
|
| |