1.

Record Nr.

UNINA9910632500803321

Autore

Daneshvar Mohammadreza

Titolo

Coordinated Operation and Planning of Modern Heat and Electricity Incorporated Networks

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2022

©2023

ISBN

1-119-86216-7

1-119-86213-2

Descrizione fisica

1 online resource (547 pages)

Collana

IEEE Press Series on Power and Energy Systems Ser.

Altri autori (Persone)

Mohammadi-IvatlooBehnam

ZareKazem

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Editor Biographies -- List of Contributors -- Preface -- Chapter 1 Overview of Modern Energy Networks -- 1.1  Introduction -- 1.2  Reliability and Resilience of Modern Energy Grids -- 1.3  Renewable Energy Availability in Modern Energy Grids -- 1.4  Modern Multi-Carrier Energy Grids -- 1.5  Challenges and Opportunities of Modern Energy Grids -- 1.6  Summary -- References -- Chapter 2 An Overview of the Transition from One-Dimensional Energy Networks to Multi-Carrier Energy Grids -- Abbreviations -- 2.1  Introduction -- 2.2  Traditional Energy Systems -- 2.2.1  Electricity Grid -- 2.2.2  Gas Grid -- 2.2.3  Heating and Cooling Grid -- 2.3  Background of Multi-Carrier Energy Systems -- 2.3.1  Distributed Energy Resources Background -- 2.3.2  Cogeneration and Trigeneration Background -- 2.3.3  Quad Generation -- 2.4  The Definition of Multi-Carrier Energy Grids -- 2.5  Benefits of Multi-Carrier Energy Grids -- 2.6  Challenges of Moving Toward Multi-Carrier Energy Grids -- 2.7  Conclusions -- References -- Chapter 3 Overview of Modern Multi-Dimension Energy Networks -- Nomenclature -- Acronyms -- 3.1  Introduction -- 3.2  Multi-Dimension Energy Networks -- 3.3  Benefits of MDENs -- 3.3.1  Enhancing System Efficiency -- 3.3.2  Decarbonization -- 3.3.3  Reducing System Operation Cost -- 3.3.4  Improving System Flexibility



and Reliability -- 3.4  Moving Toward Modern Multi-Dimension Energy Networks -- 3.4.1  Technology Advancements -- 3.4.2  Policy-Regulatory-Societal Framework -- 3.5  Coordinated Operation of Modern MDENs -- 3.5.1  Technologies -- 3.5.1.1  Enhanced Optimization Tools and Methods -- 3.5.1.2  Improved Forecasting Tools -- 3.5.2  Markets -- 3.5.2.1  Real-time Market Mechanisms -- 3.5.2.2  Peer-to-Peer Market Mechanisms -- 3.6  Coordinated Planning of Modern MDENs.

3.7  Future Plans for Increasing RERs and MDENs -- 3.8  Challenges -- 3.9  Summary -- References -- Chapter 4 Modern Smart Multi-Dimensional Infrastructure Energy Systems - State of the Arts -- Abbreviations -- 4.1  Introduction -- 4.2  Energy Networks -- 4.3  Infrastructure of Modern Multi-Dimensional Energy -- 4.4  Modeling Review -- 4.5  Integrated Energy Management System -- 4.6  Energy Conversion -- 4.7  Economic and Environmental Impact -- 4.8  Future Energy Systems -- 4.9  Conclusion -- References -- Chapter 5 Overview of the Optimal Operation of Heat and Electricity Incorporated Networks -- Abbreviations -- 5.1  Introduction -- 5.2  Integration of Electrical and Heat Energy Systems: The EH Solution -- 5.3  Energy Carriers and Elements of EH -- 5.3.1  Combined Heat and Power Technology -- 5.3.2  Power to Gas Technology -- 5.3.3  Compressed Air Energy Storage Technology -- 5.3.4  Water Desalination Unit -- 5.3.5  Plug-in Hybrid Electric Vehicles -- 5.4  Advantages of the EH System -- 5.4.1  Reliability Improvement -- 5.4.2  Flexibility Improvement -- 5.4.3  Operation Cost Reduction -- 5.4.4  Emissions Mitigation -- 5.5  Applications of the EH System -- 5.5.1  Residential Buildings -- 5.5.2  Commercial Buildings -- 5.5.3  Industrial Factories -- 5.5.4  Agricultural Sector -- 5.6  Challenges and Opportunities -- 5.6.1  Technical Point of View -- 5.6.2  Economic Point of View -- 5.6.3  Environment Point of View -- 5.6.4  Social Point of View -- 5.7  The Role of DSM Programs in the EH System -- 5.7.1  Demand Response Programs -- 5.7.2  Energy Efficiency Programs -- 5.8  Management Methods of the EH System -- 5.9  Conclusion -- References -- Chapter 6 Modern Heat and Electricity Incorporated Networks Targeted by Coordinated Cyberattacks for Congestion and Cascading Outages -- Abbreviations -- 6.1  Introduction -- 6.1.1  Scope of the Chapter.

6.1.2  Literature Review -- 6.1.3  Research Gap and Contributions of This Chapter -- 6.1.4  Organization of the Chapter -- 6.2  Proposed Framework -- 6.2.1  Illustration of the Proposed Framework -- 6.2.2  Assumptions of the Attack Framework -- 6.3  Problem Formulation -- 6.3.1  Objective Functions of the Attack Framework -- 6.3.2  Technical Constraints -- 6.3.2.1  Constraints Related to Bypassing DCSE BDD and ACSE BDD -- 6.3.2.2  Constraints Related to Thermal Units and CHP Units -- 6.3.2.3  Constraints Related to Wind Turbines -- 6.3.2.4  Constraints Related to PV Modules -- 6.3.2.5  Power and Heat Balance Constraints -- 6.3.2.6  Rest of System&amp -- rsquo -- s Constraints -- 6.4  Case Study and Simulation Results -- 6.4.1  Utilized Solver -- 6.4.2  Case Study -- 6.4.3  Investigated Scenarios of Cyberattacks -- 6.4.4  Numerical Results and Analysis -- 6.4.4.1  Elaboration of Results Associated with Scenario I -- 6.4.4.2  Elaboration of Results Associated with Scenario II -- 6.4.4.3  Elaboration of Results Associated with Scenario III -- 6.5  Conclusions and Future Work -- References -- Chapter 7 Cooperative Unmanned Aerial Vehicles for Monitoring and Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- Abbreviations -- 7.1  Introduction -- 7.2  Application of Machine Learning in Power and Energy Networks -- 7.3  Unmanned Aerial Vehicle Applications in Energy and Electricity Incorporated Networks -- 7.4  Cooperative UAVs for Monitoring and



Maintenance of Heat and Electricity Incorporated Networks: A Learning-based Approach -- 7.4.1  Network Topology -- 7.4.2  Solar Power Harvesting Model -- 7.4.3  SUAV´s Energy Outage -- 7.4.4  Mission Success Metric -- 7.4.5  Learning Strategy -- 7.4.6  Convergence Analysis -- 7.5  Simulation Results -- 7.6  Conclusions -- References.

Chapter 8 Coordinated Operation and Planning of the Modern Heat and Electricity Incorporated Networks -- Nomenclature -- Abbreviation -- Parameters -- 8.1  Introduction -- 8.2  Literature Review -- 8.3  Optimal Operation and Planning -- 8.3.1  Optimization in Incorporated Energy Networks -- 8.3.2  Stochastic Modelling -- 8.3.3  Objective Function -- 8.4  Components and Constraints -- 8.4.1  Combined Heat and Power by Waste to Energy -- 8.4.2  Photovoltaic -- 8.4.3  Wind Turbine -- 8.4.4  Ground Source Heat Pump -- 8.4.5  Boiler -- 8.4.6  Heat Storage -- 8.4.7  Heat and Electricity Demand -- 8.5  Incorporated Heat and Electricity Structure -- 8.6  Case Study -- 8.7  Demand Profile -- 8.8  Economic and Environmental Features -- 8.9  Result and Discussion -- 8.10  Conclusion -- References -- Chapter 9 Optimal Coordinated Operation of Heat and Electricity Incorporated Networks -- Nomenclature -- A. Acronyms -- B. Indices -- C. Parameters -- D. Variables -- 9.1  Introduction -- 9.2  Heat and Electricity Incorporated Networks Components and Their Modeling -- 9.2.1  Loads/Services -- 9.2.1.1  Electrical Loads -- 9.2.1.2  Thermal Loads -- 9.2.1.3  Thermal Comfort -- 9.2.2  Equipment -- 9.2.2.1  Resources -- 9.2.2.2  Storages -- 9.2.3  Buildings/Smart Homes -- 9.2.4  Heat and Electricity Incorporated Network Operator -- 9.2.5  Different Layers/Networks and Their Connection -- 9.3  Uncertainties -- 9.4  Optimal Operation of Heat and Electricity Incorporated Networks -- 9.4.1  Definition of Optimal Operation -- 9.4.2  Different Goals in Heat and Electricity Incorporated Networks Exploitation -- 9.4.3  Different Levels of Heat and Electricity Incorporated Networks Exploitation -- 9.4.4  Existing Potential of Heat and Electricity Incorporated Networks for Optimizing Their Operation -- 9.4.4.1  Internal Potential -- 9.4.4.2  External Potential.

9.5  Market/Incentives -- 9.5.1  Energy Markets -- 9.5.2  Ancillary Services Market -- 9.5.3  Tax/Incentives Impact on Heat and Electricity Incorporated Networks Operation -- 9.5.4  Offering Strategy -- 9.6  Main Achievements on Heat and Electricity Incorporated Networks Operation -- 9.7  Conclusions -- References -- Chapter 10 Optimal Energy Management of a Demand Response Integrated Combined-Heat-and-Electrical Microgrid -- Nomenclatur -- A. Acronyms -- B. Sets and Indexes -- C. Parameters -- D. Variables -- 10.1  Introduction -- 10.2  CHEM Modeling -- 10.2.1  CHEM Structure -- 10.2.2  Modeling for Heat Network -- 10.2.2.1  District Heating Network Background -- 10.2.2.2  Nodal Flow Balance -- 10.2.2.3  Calculation of Heat Energy -- 10.2.2.4  Mixing Equation for Temperature -- 10.2.2.5  Heat Dynamics and Loss -- 10.2.3  Indoor Temperature Control -- 10.2.4  Price-based Demand Response -- 10.3  Coordinated Optimization of CHEM -- 10.3.1  Objective Function -- 10.3.2  Operational Constraints -- 10.3.3  Solution Method -- 10.4  Case Studies -- 10.4.1  Simulation Test Setup -- 10.4.1.1  33-bus CHEM -- 10.4.1.2  69-bus CHEM -- 10.4.2  Discussions on Simulation Results -- 10.4.2.1  33-bus CHEM -- 10.4.2.2  69-bus CHEM -- 10.4.3  Conclusion -- References -- Chapter 11 Optimal Operation of Residential Heating Systems in Electricity Markets Leveraging Joint Power-Heat Flexibility -- 11.1  Why Joint Heat-Power Flexibility? -- 11.2  Literature Review -- 11.3  Intelligent Heating Systems -- 11.4  Flexibility Potentials of Heating Systems -- 11.5  Heat Controllers -- 11.6  Thermal Dynamics of Buildings -- 11.7  Economic Heat Controller



in Dynamic Electricity Market -- 11.7.1  Objective Function of EMPC -- 11.7.2  Case Study of EMPC -- 11.8  Flexible Heat Controller in Uncertain Electricity Market -- 11.8.1  Objective Function of SEMPC -- 11.8.2  First Stage.

11.8.3  Second Stage.