| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910632499503321 |
|
|
Autore |
Asef Pedram |
|
|
Titolo |
Modern Automotive Electrical Systems |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-119-80107-9 |
1-119-80106-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (255 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
SanjeevikumarP |
LapthornAndrew |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright Page -- Contents -- Chapter 1 General Introduction and Classification of Electrical Powertrains -- 1.1 Introduction -- 1.2 Worldwide Background for Change -- 1.3 Influence of Electric Vehicles on Climate Change -- 1.4 Mobility Class Based on Experience in the Netherlands (Based on EU Model) -- 1.5 Type-Approval Procedure -- 1.6 Torque-Speed Characteristic of the Powertrain for Mobility Vehicles -- 1.7 Methods of Field Weakening Without a Clear Definition -- 1.8 Consideration and Literature Concerning "Electronic" Field Weakening: What Does it Mean? -- 1.9 Summary of Electronic Field Weakening Definitions -- 1.10 Critical Study of Field Weakening Definitions -- 1.11 Motor Limits -- 1.12 Concluding Remarks -- References -- Chapter 2 Comparative Analyses of the Response of Core Temperature of a Lithium Ion Battery under Various Drive Cycles -- 2.1 Introduction -- 2.2 Thermal Modeling -- 2.3 Methodology -- 2.4 Simulation Results -- 2.5 Conclusions -- References -- Chapter 3 Classification and Assessment of Energy Storage Systems for Electrified Vehicle Applications: Modelling, Challenges, and Recent Developments -- 3.1 Introduction -- 3.2 Backgrounds -- 3.2.1 EV Classifications -- 3.2.2 EV Charging/Discharging Strategies -- 3.2.2.1 Uncontrolled Charge and Discharge Strategies -- 3.2.2.2 Controlled Charge and Discharge |
|
|
|
|
|
|
|
|
|
|
Strategies -- 3.2.2.3 Wireless Charging of EV -- 3.2.3 Classification of ESSs in EVs -- 3.3 Modeling of ESSs Applied in EVs -- 3.3.1 Mechanical Energy Storages -- 3.3.1.1 Flywheel Energy Storages -- 3.3.2 Electrochemical Energy Storages -- 3.3.2.1 Flow Batteries -- 3.3.2.2 Secondary Batteries -- 3.3.3 Chemical Storage Systems -- 3.3.4 Electrical Energy Storage Systems -- 3.3.4.1 Ultracapacitors -- 3.3.4.2 Superconducting Magnetic -- 3.3.5 Thermal Storage Systems -- 3.3.6 Hybrid Storage Systems. |
3.3.7 Modeling Electrical Behavior -- 3.3.8 Modeling Thermal Behavior -- 3.3.9 SOC Calculation -- 3.4 Characteristics of ESSs -- 3.5 Application of ESSs in EVs -- 3.6 Methodologies of Calculating the SOC -- 3.6.1 Current-Based SOC Calculation Approach -- 3.6.2 Voltage-Based SOC Calculation Approach -- 3.6.3 Extended Kalman-Filter-Based SOC Calculation Approach -- 3.6.4 SOC Calculation Approach Based on the Transient Response Characteristics -- 3.6.5 Fuzzy Logic -- 3.6.6 Neural Networks -- 3.7 Estimation of Battery Power Availability -- 3.7.1 PNGV HPPC Power Availability Estimation Approach -- 3.7.2 Revised PNGV HPPC Power Availability Estimation Approach -- 3.7.3 Power Availability Estimation Based on the Electrical Circuit Equivalent Model -- 3.8 Life Prediction of Battery -- 3.8.1 Aspects of Battery Life -- 3.8.1.1 Temperature -- 3.8.1.2 Depth of Discharge -- 3.8.1.3 Charging/Discharging Rate -- 3.8.2 Battery Life Prediction Approaches -- 3.8.2.1 Physic-Chemical Aging Method -- 3.8.2.2 Event-Oriented Aging Method -- 3.8.2.3 Lifetime Prediction Method Based on SOL -- 3.8.3 RUL Prediction Methods -- 3.8.3.1 Machine Learning Methods -- 3.8.3.2 Adaptive Filter Methods -- 3.8.3.3 Stochastic Process Methods -- 3.9 Recent Trends, Future Extensions, and Challenges of ESSs in EV Implementations -- 3.10 Government Policy Challenges for EVs -- 3.11 Conclusion -- References -- Chapter 4 Thermal Management of the Li-Ion Batteries to Improve the Performance of the Electric Vehicles Applications -- 4.1 Introduction -- 4.2 The Objective of the Research -- 4.3 Electric Vehicles Trend -- 4.4 Thermal Management of the Li-Ion Batteries -- 4.4.1 Internal Battery Thermal Management System -- 4.4.2 External Battery Thermal Management System -- 4.4.2.1 Active Cooling Systems -- 4.4.2.2 Passive Cooling Systems -- 4.5 Lifetime Performance of Li-Ion Batteries. |
4.5.1 Why Do Batteries Age? -- 4.5.2 Characterisation Techniques of Aging -- 4.5.3 Lifetime Tests Protocols of the Li-Ion Batteries -- 4.5.4 Lifetime Results of Different Li-Ion Technologies -- 4.6 Basic Aspects of Safety and Reliability Evaluation of EVs -- 4.6.1 Concept Reliability Analysis of Battery Pack from Thermal Aspects -- 4.6.2 Reliability Assessment of the Li-Ion Battery at High and Low Temperatures -- 4.7 Conclusion -- References -- Chapter 5 Fault Detection and Isolation in Electric Vehicle Powertrain -- 5.1 Introduction -- 5.1.1 EV Powertrain Configurations -- 5.1.1.1 Battery Electric Vehicle (BEV) -- 5.1.1.2 Hybrid Electric Vehicle (HEV) -- 5.1.1.3 Fuel Cell Electric Vehicle (FCEV) -- 5.1.2 EV Powertrain Technologies -- 5.1.2.1 Energy Storage System -- 5.1.2.2 Electric Motor -- 5.1.2.3 Power Electronics -- 5.2 Battery Fault Diagnosis -- 5.2.1 Battery Management System (BMS) -- 5.2.2 Model-Based FDI Approach -- 5.2.2.1 Battery Modelling -- 5.2.3 Signal Processing-Based FDI Approach -- 5.2.3.1 State of Charge (SOC) Estimation -- 5.2.3.2 State of Health Estimation -- 5.3 Electric Motor Fault Diagnosis -- 5.3.1 Electric Motor Faults -- 5.3.1.1 Mechanical Fault -- 5.3.1.2 Electrical Fault -- 5.3.2 Signal Processing-Based FDI Approach -- 5.3.2.1 Motor Current Signature Analysis (MSCA) -- 5.4 Power Electronics Fault Diagnosis -- 5.4.1 Signal Processing-Based FDI Approach -- 5.4.1.1 Open Switch Fault -- 5.4.1.2 Short Switch Fault -- 5.5 Conclusions -- References -- Index -- EULA. |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910438058303321 |
|
|
Autore |
Li Feng |
|
|
Titolo |
Interference cancellation using space-time processing and precoding design / / Feng Li |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Heidelberg [Germany], : Springer, 2013 |
|
|
|
|
|
|
|
ISBN |
|
9786613943019 |
9781283630566 |
1283630567 |
9783642307126 |
3642307124 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (102 p.) |
|
|
|
|
|
|
Collana |
|
Signals and communication technology, , 1860-4862 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Interference (Sound) - Prevention |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Interference Cancellation and Detection for MAC with Two Users -- Interference Cancellation and Detection for More than Two Users -- Interference Cancellation for MAC Using Quantized Feedback -- Interference-Free Transmission for X channels. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available. This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method. Dr. Feng Li is a scientific researcher at Cornell University. |
|
|
|
|
|
|
|
| |