1.

Record Nr.

UNINA9910632499403321

Autore

Chang Chein-I

Titolo

Advances in Hyperspectral Image Processing Techniques

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2022

©2023

ISBN

1-119-68778-0

1-119-68775-6

1-119-68777-2

Descrizione fisica

1 online resource (611 pages)

Collana

IEEE Press Ser.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Editor Biography -- List of Contributors -- Preface -- Part I General Theory -- Chapter 1 Introduction: Two Fundamental Principles Behind Hyperspectral Imaging -- 1.1  Introduction -- 1.2  Why Is Hyperspectral Imaging? -- 1.3  Two Principles for Hyperspectral Imaging -- 1.3.1  Pigeon-Hole Principle -- 1.3.2  Orthogonality Principle -- 1.4  What Are the Issues of Hyperspectral Imaging? -- 1.5  Determination of p by Virtual Dimensionality via Pigeon-Hole Principle -- 1.6  Order Determination of Low Rank and Sparse Matrices by Virtual Dimensionality via Pigeon-Hole Principle -- 1.7  Band Selection by Pigeon-Hole Principle -- 1.8  Band Selection by a Hyperspectral Band Channel via Pigeon-Hole Principle -- 1.9  Band Sampling via Pigeon-Hole Principle -- 1.10  Spectral Unmixing via Orthogonality Principle -- 1.11  Target Detection by Orthogonality Principle -- 1.11.1  ATGP -- 1.11.1.1  Automatic Target Generation Process (ATGP) -- 1.11.2  Constrained Energy Minimization (CEM) -- 1.12  Anomaly Detection by Orthogonality Principle -- 1.13  Endmember Finding by Orthogonality Principle -- 1.13.1  Pixel Purity Index (PPI) -- 1.13.2  Vertex Component Analysis (VCA) -- 1.13.3  Simplex Growing Algorithm (SGA) -- 1.14  Low Rank and Sparse Representation by OSP via Orthogonality Principle -- 1.15  Hyperspectral Classification -- 1.15.1  Hyperspectral Mixed Pixel



Classification (HMPC) -- 1.15.2  Number of Sampled Bands Lower Than Number of Classes -- 1.15.3  Potential and Promise of Band Sampling in HMPC -- 1.16  Conclusion -- References -- Chapter 2 Overview of Hyperspectral Imaging Remote Sensing from Satellites -- 2.1  Hyperspectral Imaging Remote Sensing from Airplanes to Satellites -- 2.1.1  History of Development of Airborne Hyperspectral Imagers.

2.1.2  Early Development of Spaceborne Hyperspectral Imagers -- 2.2  Development of Spaceborne Hyperspectral Imagers in the Last Two Decades -- 2.2.1  Survey of Spaceborne Hyperspectral Imagers -- Acronyms List -- 2.2.2  Brief Description of Spaceborne Hyperspectral Imagers -- 2.2.2.1  Visible Imagers and Spectrographic Imagers (UVISI) Onboard the MSX Satellite -- 2.2.2.2  HyperSpectral Imager (HSI) for the LEWIS Mission -- 2.2.2.3  MODIS Onboard Terra and Aqua Satellites -- 2.2.2.4  Hyperion Onboard NASA's EO-1 Satellite -- 2.2.2.5  CHRIS Onboard ESA's PROBA Satellite -- 2.2.2.6  MERIS Onboard ESA's ENVISAT Satellite -- 2.2.2.7  VIRTIS for ESA's Rosetta, Venus-Express, and NASA-Dawn Planetary Missions -- 2.2.2.8  CRISM Aboard Mars Reconnaissance Orbiter -- 2.2.2.9  Moon Mineralogy Mapper for Mapping Lunar Surface -- 2.2.2.10  Fourier Transform Hyperspectral Imager Onboard Chinese Environment  Satellite -- 2.2.2.11  HySI Onboard Indian Mini Satellite-1 -- 2.2.2.12  ARTEMIS Onboard TacSat-3 -- 2.2.2.13  HICO Onboard the International Space Station -- 2.2.2.14  Visible and Near-infrared Imaging Spectrometer Aboard Chang'E 3 Spacecraft -- 2.2.2.15  Ocean and Land Color Imager (OLCI) on Sentinel-3A -- 2.2.2.16  Miniature High-Resolution Imaging Spectrometer on GHGSat-D -- 2.2.2.17  Aalto-1 Spectral Imager .(AaSI) on a 3U Nanosatellite -- 2.2.2.18  DLR Earth Sensing Imaging Spectrometer on the International Space Station -- 2.2.2.19  HyperScout Hyperspectral Camera on ESA's Nanosatellite GomX-4B -- 2.2.2.20  Advanced Hyperspectral Imager (AHSI) on Chinese Gaofen-5 Satellite -- 2.2.2.21  Italian Hyperspectral Satellite PRISMA -- 2.2.2.22  Hyperspectral Imager Suite Onboard the International Space Station -- 2.2.2.23  German Spaceborne Hyperspectral Imager EnMAP -- 2.2.2.24  ESA's Moons and Jupiter Imaging Spectrometer (MAJIS) -- 2.3  Conclusion.

References -- Chapter 3 Efficient Hardware Implementation for Hyperspectral Anomaly and Target Detection -- 3.1  Introduction -- 3.2  Hyperspectral Anomaly and Target Detection -- 3.2.1  DPBS-CEM -- 3.2.2  DBN-RXD -- 3.2.3  Fast-ATGP -- 3.2.4  Fast-MGD -- 3.3  Model-Based Design -- 3.3.1  What is Model-Based Design? -- 3.3.2  FPGA Development Based on MBD -- 3.3.3  Examples of IP Design Based on HLS -- 3.3.3.1  Efficient Off-Chip Storage Access IP -- 3.3.3.2  Parallel Matrix Multiplication IP -- 3.3.3.3  Matrix Dot-Product-Plus IP -- 3.3.3.4  Erosion/Dilation IP -- 3.4  System Integration Framework Design -- 3.4.1  Efficient FPGA Implementation -- 3.4.1.1  FPGA Implementation of DPBS-CEM -- 3.4.1.2  FPGA Implementation of DBN-RXD -- 3.4.1.3  FPGA Implementation of Fast-ATGP -- 3.4.1.4  FPGA Implementation of Fast-MGD -- 3.5  Experiments and Discussions -- 3.5.1  Hyperspectral Image Data Set -- 3.5.1.1  TE1 Data Set -- 3.5.1.2  HyMap Data Set -- 3.5.1.3  Airport-Beach-Urban. .(ABU) Data Set -- 3.5.1.4  Cuprite Data Set -- 3.5.1.5  San Diego Data Set -- 3.5.1.6  HYDICE Data Set -- 3.5.2  Experiments of DPBS-CEM -- 3.5.2.1  Detection Accuracy -- 3.5.2.2  Acceleration Performance -- 3.5.3  Experiments of DBN-RXD -- 3.5.3.1  Detection Accuracy -- 3.5.3.2  Acceleration Performance -- 3.5.4  Experiments of Fast-ATGP -- 3.5.4.1  Detection Accuracy -- 3.5.4.2  Results for the AVIRIS Cuprite Scene -- 3.5.5  Experiments of Fast-MGD -- 3.5.5.1  Detection Accuracy -- 3.5.5.2  Performance Evaluation -- 3.6  Conclusion --



References -- Part II Band Selection for Hyperspectral Imaging -- Chapter 4 Constrained Band Selection for Hyperspectral Imaging -- 4.1  Introduction -- 4.2  Constrained BS -- 4.2.1  Band Vector-Constrained BS -- 4.2.1.1  Band Correlation Minimization (BCM) -- 4.2.1.2  Band Dependence Minimization (BDM).

4.2.1.3  Band Correlation Constraint (BCC) -- 4.2.1.4  Band Dependence Constraint (BDC) -- 4.2.2  Band Image-Constrained BS -- 4.3  BCBS Experiments -- 4.3.1  HYDICE Data -- 4.3.1.1  Target Detection -- 4.3.1.2  Unsupervised Mixed Pixel Classification -- 4.3.2  AVIRIS Cuprite Data -- 4.4  Target-Constrained BS -- 4.4.1  Target-Constrained Band Prioritization -- 4.4.1.1  Single Band Minimum Variance Band Prioritization by TCBS -- 4.4.1.2  Leave-One-Out Maximum Variance Band Prioritization by TCBS -- 4.4.2  Constrained-Target Band Selection -- 4.4.2.1  Sequential Feed-Forward TCBS -- 4.4.2.2  Sequential Backward TCBS -- 4.5  TCBS Experiments -- 4.6  Conclusion -- References -- Chapter 5 Band Subset Selection for Hyperspectral Imaging -- 5.1  Introduction -- 5.2  Simultaneous Multiple Band Selection -- 5.3  Search Strategies for BSS -- 5.3.1  Sequential Band Subset Selection -- 5.3.2  Successive Band Subset Selection -- 5.4  Channel Capacity BSS -- 5.5  Multiple Band-Constrained Band Subset Selection -- 5.5.1  Constrained BSS (CBSS) -- 5.5.2  Search Algorithms for CBSS -- 5.5.2.1  Sequential CBSS (SQ CBSS) -- 5.5.2.2  Successive CBSS (SC CBSS) -- 5.6  Application-Specified BSS (AS-BSS) -- 5.6.1  Application to Hyperspectral Classification -- 5.6.2  LCMV Criterion for BSS -- 5.6.3  LCMV-BSS Algorithms -- 5.6.3.1  SQ LCMV-CBSS -- 5.6.3.2  SC LCMV-CBSS -- 5.7  Experiments -- 5.7.1  MBC-BSS -- 5.7.2  MTC-BSS -- 5.7.2.1  Purdue Indiana Indian Pines Scene -- 5.7.2.2  Salinas -- 5.7.2.3  ROSIS Data -- 5.8  Conclusion -- References -- Chapter 6 Progressive Band Selection Processing for Hyperspectral Image Classification -- 6.1  Introduction -- 6.2  Measures of Class Classification Priority -- 6.3  p-Ary Huffman Coding Tree Construction -- 6.4  Iterative LCMV -- 6.4.1  Linearly Constrained Minimum Variance (LCMV).

6.4.2  Iterative Linearly Constrained Minimum Variance (ILCMV) -- 6.5  Class Signature Constrained Band Prioritization-Based Band Selection -- 6.6  Progressive Band Selection -- 6.7  Classification Measures -- 6.8  Real Images to be Used for Experiments -- 6.8.1  Purdue Indiana Indian Pines -- 6.8.2  Salinas -- 6.8.3  ROSIS Data -- 6.9  Experiments -- 6.9.1  Purdue Indiana Indian Pines -- 6.9.2  Salinas -- 6.9.3  University of Pavia -- 6.10  Conclusion -- References -- Part III Compressive Sensing for Hyperspectral Imaging -- Chapter 7 Restricted Entropy and Spectrum Properties for Hyperspectral Imaging -- 7.1  Introduction -- 7.2  Compressive Sensing Review -- 7.3  Restricted Entropy Property -- 7.4  Restricted Spectrum Property -- 7.5  REP and RSP Hyperspectral Measures -- 7.6  Experiments -- 7.7  Conclusion -- References -- Chapter 8 Endmember Finding in Compressively Sensed Band Domain -- 8.1  Introduction -- 8.2  Compressive Hyperspectral Band Sensing -- 8.2.1  Compressive Sensing Framework -- 8.2.2  Compressive Sensing of Hyperspectral Bands -- 8.2.3  Universality Model -- 8.3  Simplex Volume Calculation -- 8.3.1  Simplex Volume via Singular Value Decomposition -- 8.3.2  Simplex Volume via Matrix Determinant -- 8.4  Restricted Simplex Volume Property -- 8.5  Two Sequential Algorithms for p-FINDR -- 8.5.1  SeQuential p-FINDR (SQ p-FINDR) -- 8.5.2  SuCcessive p-FINDR (SC p-FINDR) -- 8.5.3  SQ p-FINDR and SC p-FINDR in CSBD -- 8.6  Experiments -- 8.6.1  Experimental Setup -- 8.6.2  Algorithm Analysis on Experimental Data -- 8.7  Experimental Results and Discussions -- 8.7.1  SQ p-FINDR Experimental Result Analysis -- 8.7.2  SC p-FINDR Experimental Result



Analysis -- 8.8  Conclusion -- References -- Chapter 9 Hyperspectral Image Classification in Compressively Sensed Band Domain -- 9.1  Introduction -- 9.2  Compressive Sensing Review.

9.2.1  Compressive Sensing Framework.