| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996223742403316 |
|
|
Titolo |
Rivista di diritto processuale |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Soggetti |
|
Civil procedure - Italy |
Procedure (Law) |
Civil procedure |
Procesrecht |
Procediment civil |
Dret processal |
Procediment penal - Itàlia |
Dret processal - Itàlia |
Periodicals. |
Revistes electròniques |
Italy |
Itàlia |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Periodico |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910631083703321 |
|
|
Autore |
Yuan Ye |
|
|
Titolo |
Latent Factor Analysis for High-dimensional and Sparse Matrices : A particle swarm optimization-based approach / / by Ye Yuan, Xin Luo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2022 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2022.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (99 pages) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Computer Science, , 2191-5776 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Artificial intelligence - Data processing |
Quantitative research |
Data mining |
Data Science |
Data Analysis and Big Data |
Data Mining and Knowledge Discovery |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Chapter 1. Introduction -- Chapter 2. Learning rate-free Latent Factor Analysis via PSO -- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO -- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Latent Factor Analysis via PSO -- Chapter 5. Advanced Learning rate-free Latent Factor Analysis via P2SO -- Chapter 6. Conclusion and Discussion. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be |
|
|
|
|
|
|
|
|
|
|
incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed. |
|
|
|
|
|
| |