1.

Record Nr.

UNISALENTO991003077319707536

Autore

J. Paul Getty Museum of art <Malibù>

Titolo

Roman portraits in the Getty Museum / [a cura di] Jirí Frel

Pubbl/distr/stampa

[S.l.] : [Philbrook Art Center and the J. Paul Getty Museum], [1981]

Descrizione fisica

VI, 137 p. ; 17 cm

Altri autori (Persone)

Frel, Jirí

Disciplina

733

Soggetti

Ritratti romani - Collezioni - Malibù - Paul Getty Museum - Cataloghi

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910627272303321

Autore

Lei Yaguo

Titolo

Big Data-Driven Intelligent Fault Diagnosis and Prognosis for Mechanical Systems / / by Yaguo Lei, Naipeng Li, Xiang Li

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023

ISBN

981-16-9131-2

Edizione

[1st ed. 2023.]

Descrizione fisica

1 online resource (292 pages)

Collana

Engineering Series

Disciplina

005.7

Soggetti

Machinery

Machinery and Machine Elements

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction and Background -- Traditional Intelligent Fault Diagnosis -- Hybrid Intelligent Fault Diagnosis Methods -- Deep Learning-Based Intelligent Fault Diagnosis -- Data-Driven RUL Prediction -- Data-Model Fusion RUL Prediction.



Sommario/riassunto

This book presents systematic overviews and bright insights into big data-driven intelligent fault diagnosis and prognosis for mechanical systems. The recent research results on deep transfer learning-based fault diagnosis, data-model fusion remaining useful life (RUL) prediction, etc., are focused on in the book. The contents are valuable and interesting to attract academic researchers, practitioners, and students in the field of prognostics and health management (PHM). Essential guidelines are provided for readers to understand, explore, and implement the presented methodologies, which promote further development of PHM in the big data era. Features: Addresses the critical challenges in the field of PHM at present Presents both fundamental and cutting-edge research theories on intelligent fault diagnosis and prognosis Provides abundant experimental validations and engineering cases of the presented methodologies.