Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 What Is Evapotranspiration Estimation? -- 1.2 Challenges and Opportunities -- 1.3 Smart Big Data in Precision Agriculture: Acquisition and Advanced Analytics -- 1.3.1 What Is Smart Big Data in Precision Agriculture? -- 1.3.2 Plant Physiology-Informed Machine Learning: A New Frontier for Precision Agriculture -- 1.3.3 Big Data Acquisition and Advanced Analytics -- 1.3.4 Fractional Calculus (FC) and Fractional-Order Thinking (FOT) -- 1.3.5 Complexity and Inverse Power Laws (IPLs) -- 1.3.6 Heavy-Tailed Distributions -- 1.3.6.1 The Lévy Distribution -- 1.3.6.2 The Mittag-Leffler PDF -- 1.3.6.3 The Weibull Distribution -- 1.3.6.4 The Cauchy Distribution -- 1.3.6.5 The Pareto Distribution -- 1.3.6.6 The α-Stable Distribution -- 1.3.6.7 Mixture Distributions -- 1.3.6.8 The Gaussian Distribution -- 1.3.6.9 The Laplace Distribution -- 1.3.7 Big Data, Variability, and FC -- 1.3.7.1 The Hurst Parameter, fGn, and fBm -- 1.3.7.2 Fractional Lower-Order Moments (FLOMs) -- 1.3.7.3 Fractional Autoregressive Integrated Moving Average (FARIMA) and Gegenbauer Autoregressive Moving Average (GARMA) -- 1.3.7.4 Continuous-Time Random Walk (CTRW) -- 1.3.7.5 Unmanned Aerial Vehicles (UAVs) and Precision Agriculture -- 1.3.8 Optimal Machine Learning and Optimal Randomness -- 1.3.8.1 Derivative-Free Methods |