1.

Record Nr.

UNINA9910624380503321

Autore

Mailund Thomas

Titolo

R 4 Data Science Quick Reference : A Pocket Guide to APIs, Libraries, and Packages / / by Thomas Mailund

Pubbl/distr/stampa

Berkeley, CA : , : Apress : , : Imprint : Apress, , 2022

ISBN

9781484287804

1484287800

Edizione

[2nd ed. 2022.]

Descrizione fisica

1 online resource (231 pages)

Disciplina

519.502855133

Soggetti

Programming languages (Electronic computers)

Big data

Computer science

Programming Language

Big Data

Computer Science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

1. Introduction. - 2. Importing Data: readr -- 3. Representing Tables: tibble. - 4. Tidy+select, 5. Reformatting Tables: tidyr -- 6. Pipelines: magrittr -- 7. Functional Programming: purrr. - 8. Manipulating Data Frames: dplyr. - 9. Working with Strings: stringr -- 10. Working with Factors: forcats. - 11. Working with Dates: lubridate. - 12. Working with Models: broom and modelr. - 13. Plotting: ggplot2 -- 14. Conclusions.

Sommario/riassunto

In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub.. You will: Implement applicable R 4 programming language specification features Import data with readr



Work with categories using forcats, time and dates with lubridate, and strings with stringr Format data using tidyr and then transform that data using magrittr and dplyr Write functions with R for data science, data mining, and analytics-based applications Visualize data with ggplot2 and fit data to models using modelr.