1.

Record Nr.

UNISALENTO991004231779707536

Autore

Bode, Wilhelm : von

Titolo

Der weimarische Musenhof : 1756-1781 / von Wilhelm Bode

Pubbl/distr/stampa

Berlin : E.S. Mittler & Sohn, 1925

Descrizione fisica

XIV, 468 p. : ill. ; 19 cm

Disciplina

943.053

Soggetti

Letteratura tedesca

Weimar - Vita culturale

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910717185103321

Autore

Garner Bradley D.

Titolo

Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007-08 / / by Bradley D. Garner and Margot Truini

Pubbl/distr/stampa

Reston, Virginia : , : U.S. Depatment of the Interior, U.S. Geological Survey, , 2011

Descrizione fisica

1 online resource (viii, 34 pages) : color illustrations, color maps

Collana

Scientific investigations report ; ; 2011-5159

Altri autori (Persone)

GoodeDaniel J

Soggetti

Groundwater flow - Arizona - Mohave County

Water-supply - Arizona - Mohave County

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"Prepared in cooperation with the Arizona Department of Water Resources."

Includes interactive water-budget figures.

Nota di bibliografia

Includes bibliographical references (pages 24-27).



3.

Record Nr.

UNINA9910624377103321

Autore

Grynkiewicz David J. <1978->

Titolo

The Characterization of Finite Elasticities : Factorization Theory in Krull Monoids via Convex Geometry / / by David J. Grynkiewicz

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

9783031148699

9783031148682

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (291 pages)

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2316

Disciplina

516.08

Soggetti

Number theory

Commutative algebra

Commutative rings

Group theory

Convex geometry

Discrete geometry

Number Theory

Commutative Rings and Algebras

Group Theory and Generalizations

Convex and Discrete Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Convex Geometry -- 1.2 Krull Domains, Transfer Krull Monoids and Factorization -- 1.3 Zero-Sum Sequences -- 1.4 Overview of Main Results -- 2 Preliminaries and General Notation -- 2.1 Convex Geometry -- 2.2 Lattices and Partially Ordered Sets -- 2.3 Sequences and Rational Sequences -- 2.4 Arithmetic Invariants for Transfer Krull Monoids -- 2.5 Asymptotic Notation -- 3 Asymptotically Filtered Sequences, Encasement and Boundedness -- 3.1 Asymptotically Filtered Sequences -- 3.2 Encasement and Boundedness -- 4 Elementary Atoms, Positive Bases and Reay Systems -- 4.1 Basic Non-degeneracy Characterizations -- 4.2 Elementary Atoms and Positive Bases -- 4.3 Reay Systems -- 4.4 -Filtered Sequences, Minimal Encasement and



Reay Systems -- 5 Oriented Reay Systems -- 6 Virtual Reay Systems -- 7 Finitary Sets -- 7.1 Core Definitions and Properties -- 7.2 Series Decompositions and Virtualizations -- 7.3 Finiteness Properties of Finitary Sets -- 7.4 Interchangeability and the Structure of X(G0) -- 8 Factorization Theory -- 8.1 Lambert Subsets and Elasticity -- 8.2 The Structure of Atoms and Arithmetic Invariants -- Summary -- 8.3 Transfer Krull Monoids Over Subsets of Finitely Generated Abelian Groups -- Summary -- References -- Index.

Sommario/riassunto

This book develops a new theory in convex geometry, generalizing positive bases and related to Carathéordory’s Theorem by combining convex geometry, the combinatorics of infinite subsets of lattice points, and the arithmetic of transfer Krull monoids (the latter broadly generalizing the ubiquitous class of Krull domains in commutative algebra) This new theory is developed in a self-contained way with the main motivation of its later applications regarding factorization. While factorization into irreducibles, called atoms, generally fails to be unique, there are various measures of how badly this can fail. Among the most important is the elasticity, which measures the ratio between the maximum and minimum number of atoms in any factorization. Having finite elasticity is a key indicator that factorization, while not unique, is not completely wild. Via the developed material in convex geometry, we characterize when finite elasticity holds for any Krull domain with finitely generated class group $G$, with the results extending more generally to transfer Krull monoids. This book is aimed at researchers in the field but is written to also be accessible for graduate students and general mathematicians.