|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910619278603321 |
|
|
Titolo |
Computer vision - ECCV 2022 . Part XXV : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, proceedings / / Shai Avidan [and four others] (editors) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (815 pages) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science ; ; Volume 13685 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Computer vision |
Image processing - Digital techniques |
Optical pattern recognition |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Foreword -- Preface -- Organization -- Contents - Part XXV -- Cross-domain Ensemble Distillation for Domain Generalization -- 1 Introduction -- 2 Related Work -- 3 Our Method -- 3.1 Cross-Domain Ensemble Distillation -- 3.2 UniStyle: Removing and Unifying Style Bias -- 3.3 Analysis of Our Method -- 4 Experiments -- 4.1 Generalization in Image Classification -- 4.2 Generalization in Person Re-ID -- 4.3 Generalization in Semantic Segmentation -- 4.4 In-depth Analysis -- 5 Conclusion -- References -- Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels -- 1 Introduction -- 2 Related Work -- 3 Method -- 3.1 Overview -- 3.2 Feature-based Clustering -- 3.3 Consistency-based Classification -- 3.4 Training Procedure -- 4 Experiment -- 4.1 Datasets -- 4.2 Implementation Details -- 4.3 Experimental Results -- 4.4 Ablation Study -- 4.5 Performance Against Class Imbalance -- 4.6 AUC of Noisy vs. Clean Classification -- 5 Conclusion -- References -- Hyperspherical Learning in Multi-Label Classification -- 1 Introduction -- 2 Related Works -- 2.1 Learning from Noisy Labels -- 2.2 Hyperspherical Learning -- 2.3 Label Correlation -- 3 Method -- 3.1 Preliminaries -- 3.2 Learning in Hyperspherical Space -- 3.3 Learning from Single Positive Labels -- 3.4 Adaptive Learning -- 3.5 Label |
|
|
|
|