1.

Record Nr.

UNINA990000494670403321

Autore

Lamport, Leslie

Titolo

Latex : a document preparation system / Leslie Lamport ; ill. Duane Bibby

Pubbl/distr/stampa

Reading, Mass. : Addison-Wesley, ©1986

ISBN

020115790X

Descrizione fisica

242 p. : ill. ; 24 cm

Disciplina

686.225 44

Locazione

DINEL

FINBN

Collocazione

10 P.T. 630

02 52 C 50

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In cop. "user's guide and reference manual"



2.

Record Nr.

UNISALENTO991003974719707536

Autore

Gros, Léon-Gabriel

Titolo

Poètes contemporains / Léon Gabriel Gros

Pubbl/distr/stampa

Paris : Cahiers du Sud, [19--]

Descrizione fisica

v. ; 23 cm.

Disciplina

841.9109

Soggetti

Poesia francese

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Contiene: 2. -- 1951. -- 247 p.

3.

Record Nr.

UNICASRML0283058

Autore

Kopka, Helmut

Titolo

Guide to Latex / Helmut Kopka, Patrick W. Daly

Pubbl/distr/stampa

Boston, : Addison-Wesley, c2004

ISBN

0321173856

Edizione

[4. ed]

Descrizione fisica

xii, 597 p. ; 24 cm + 1 cd-rom

Altri autori (Persone)

Daly, Patrick W.

Disciplina

686.22544

Soggetti

Latex

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



4.

Record Nr.

UNINA9910619276703321

Autore

Sapienza Salvatore

Titolo

Big Data, Algorithms and Food Safety : A Legal and Ethical Approach to Data Ownership and Data Governance / / by Salvatore Sapienza

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

9783031093678

9783031093661

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (225 pages)

Collana

Law, Governance and Technology Series, , 2352-1910 ; ; 52

Disciplina

005.7

Soggetti

Information technology - Law and legislation

Mass media - Law and legislation

Artificial intelligence

Big data

Food - Safety measures

IT Law, Media Law, Intellectual Property

Artificial Intelligence

Big Data

Food Safety

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Chapter 1:Food, Big Data, Artificial Intelligence -- Chapter 2:Data Ownership in Food-related Information -- Chapter 3:Food Consumption Data Protection -- Chapter 4:Current and Foreseeable Trends in Food Safety Data Governance -- Chapter 5: The P-SAFETY Model: a Unifying Ethical Approach -- Chapter 6: Conclusion: a Responsible Food Innovation.

Sommario/riassunto

This book identifies the principles that should be applied when processing Big Data in the context of food safety risk assessments. Food safety is a critical goal in the protection of individuals’ right to health and the flourishing of the food and feed market. Big Data is fostering new applications capable of enhancing the accuracy of food safety risk assessments. An extraordinary amount of information is analysed to detect the existence or predict the likelihood of future



risks, also by means of machine learning algorithms. Big Data and novel analysis techniques are topics of growing interest for food safety agencies, including the European Food Safety Authority (EFSA). This wealth of information brings with it both opportunities and risks concerning the extraction of meaningful inferences from data. However, conflicting interests and tensions among the parties involved are hindering efforts to find shared methods for steering the processing of Big Data in a sound, transparent and trustworthy way. While consumers call for more transparency, food business operators tend to be reluctant to share informational assets. This has resulted in a considerable lack of trust in the EU food safety system. A recent legislative reform, supported by new legal cases, aims to restore confidence in the risk analysis system by reshaping the meaning of data ownership in this domain. While this regulatory approach is being established, breakthrough analytics techniques are encouraging thinking about the next steps in managing food safety data in the age of machine learning. The book focuses on two core topics – data ownership and data governance – by evaluating how the regulatory framework addresses the challenges raised by Big Data and its analysis in an applied, significant, and overlooked domain. To do so, it adopts an interdisciplinary approach that considers both the technological advances and the policy tools adopted in the European Union, while also assuming an ethical perspective when exploring potential solutions. The conclusion puts forward a proposal: an ethical blueprint for identifying the principles – Security, Accountability, Fairness, Explainability, Transparency and Privacy – to be observed when processing Big Data for food safety purposes, including by means of machine learning. Possible implementations are then discussed, also in connection with two recent legislative proposals, namely the Data Governance Act and the Artificial Intelligence Act.



5.

Record Nr.

UNIORUON00294652

Autore

CARLIER, Marie-Caroline

Titolo

19. [dix-neuvième] siècle / Marie-Caroline Carlier ... [et al.] ; avec la collaboration de Sylvie Beauthier ... [et al.]

Pubbl/distr/stampa

Paris, : Hatier, c1988

ISBN

22-18-02035-1

Descrizione fisica

576 p. : ill. ; 29 cm.

Disciplina

840.7

Soggetti

Letteratura francese - Storia - Sec. 19

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia