|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910619267503321 |
|
|
Titolo |
Computer vision - ECCV 2022 . Part XXVIII : 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, proceedings / / Shai Avidan [and four others] (editors) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (806 pages) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science ; ; Volume 13688 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Computer vision |
Pattern recognition systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Foreword -- Preface -- Organization -- Contents - Part XXVIII -- Salient Object Detection for Point Clouds*-10pt -- 1 Introduction -- 2 Related Work -- 3 Proposed Dataset -- 3.1 Dataset Construction -- 3.2 Dataset Statistics -- 4 Proposed Method -- 4.1 Overall Architecture -- 4.2 Proposed Modules -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Comparison and Analysis -- 5.3 Ablation Study -- 6 Conclusion -- References -- Learning Semantic Segmentation from Multiple Datasets with Label Shifts -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Multi-dataset Semantic Segmentation -- 3.2 Revisited Binary Cross-Entropy Loss -- 3.3 Class-Relational Binary Cross-Entropy Loss -- 3.4 Model Training and Implementation Details -- 4 Experimental Results -- 4.1 Datasets and Experimental Setting -- 4.2 Overall Performance -- 4.3 Results on WildDash2 Benchmark -- 4.4 Qualitative Analysis -- 5 Conclusion -- References -- Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination*-10pt -- 1 Introduction -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Unsupervised Region-Level Boundary Awareness -- 3.2 Unsupervised Region-Level Instance Discrimination -- 3.3 Supervised Learning for Labeled Data -- 3.4 The Overall Optimization Loss Function -- 4 Experiments -- 4.1 Experimental Settings -- 4.2 WSL-Based 3D Semantic Segmentation -- |
|
|
|
|