1.

Record Nr.

UNINA9910139134303321

Titolo

Future Earth : advancing civic understanding of the anthropocene / / Diana Dalbotten, Gillian Roehrig, Patrick Hamilton, editors

Pubbl/distr/stampa

Washington, District of Columbia ; ; Hoboken, New Jersey : , : American Geophysical Union : , : Wiley, , 2014

©2014

ISBN

1-118-85419-5

1-118-85428-4

1-118-85426-8

Edizione

[1st ed.]

Descrizione fisica

1 online resource (149 p.)

Collana

Geophysical Monograph Series ; ; 230

Classificazione

SCI019000

Disciplina

304.2

Soggetti

Geological time

Global environmental change

Communication in science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters and index.

Nota di contenuto

Machine generated contents note:  Future Earth--Advancing Civic Understanding of the Anthropocene Acknowledgements Preface Patrick Hamilton Chapter 1. Welcome to the Anthropocene Patrick Hamilton Chapter 2. The Anthropocene and the Framework for K-12 Science Education Fred N. Finley Chapter 3. Teacher Professional Development in the Anthropocene Devarati Bhattacharya, Gillian Roehrig, Anne Kern, and Mindy Howard Chapter 4. Climate Literacy and Scientific Reasoning Shiyu Liu, Keisha Varma, and Gillian Roehrig Chapter 5. Evaluation and Assessment of Civic Understanding of Planet Earth Julie C. Libarkin Chapter 6. Community-Driven Research in the Anthropocene Rajul Pandya Chapter 7. Geoscience Alliance: Building Capacity to Use Science for Sovereignty in Native Communities Nievita Bueno Watts, Wendy Smythe, Emily Geraghty Ward, Diana Dalbotten, Vanessa Green, Merv Tano, and Antony Berthelote Chapter 8. New Voices: The Role of Undergraduate Geoscience Research in Supporting Alternative Perspectives on the Anthropocene Diana Dalbotten, Rebecca Haaker-Santos, and Suzanne Zurn-Birkhimer Chapter 9. Shaping the Public



Dialogue on Climate Change William Spitzer Chapter 10. Opportunities for Communicating Ocean Acidification to Visitors at Informal Science Education Institutions Douglas Meyer and Bill Mott Chapter 11. City-wide Collaborations for Urban Climate Education Steven Snyder, Rita Mukherjee Hoffstadt, Lauren B. Allen, Kevin Crowley, Daniel Bader, and Radley Horton Chapter 12. On Bridging the Journalism/Science Divide Bud Ward .

Sommario/riassunto

"Future Earth is a valuable practical guide for scientists from all disciplines including geoscientists, museum curators, science educators, and public policy makers"--

2.

Record Nr.

UNINA9910592993003321

Autore

Palani S.

Titolo

Principles of digital signal processing / / S. Palani

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

9783030963224

9783030963217

Edizione

[Second edition.]

Descrizione fisica

1 online resource (689 pages)

Disciplina

621.3822

Soggetti

Signal processing - Digital techniques

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface to the Second Edition -- Preface to the First Edition -- Contents -- About the Author -- 1 Representation of Discrete Signals and Systems -- 1.1 Introduction -- 1.2 Terminologies Related to Signals and Systems -- 1.2.1 Signal -- 1.2.2 System -- 1.3 Continuous and Discrete Time Signals -- 1.4 Basic Discrete Time Signals -- 1.4.1 The Unit Impulse Sequence -- 1.4.2 The Basic Unit Step Sequence -- 1.4.3 The Basic Unit Ramp Sequence -- 1.4.4 Unit Rectangular Sequence -- 1.4.5 Sinusoidal Sequence -- 1.4.6 Discrete Time Real Exponential Sequence -- 1.5 Basic Operations on Discrete Time Signals -- 1.5.1 Addition of Discrete Time Sequence -- 1.5.2 Multiplication of



DT Signals -- 1.5.3 Amplitude Scaling of DT Signal -- 1.5.4 Time Scaling of DT Signal -- 1.5.5 Time Shifting of DT Signal -- 1.5.6 Multiple Transformation -- 1.6 Classification of Discrete Time Signals -- 1.6.1 Periodic and Non-periodic DT Signals -- 1.6.2 Odd and Even DT Signals -- 1.6.3 Energy and Power of DT Signals -- 1.7 Discrete Time System -- 1.8 Properties of Discrete Time System -- 1.8.1 Linear and Nonlinear Systems -- 1.8.2 Time Invariant and Time Varying DT Systems -- 1.8.3 Causal and Non-causal DT Systems -- 1.8.4 Stable and Unstable Systems -- 1.8.5 Static and Dynamic Systems -- 1.8.6 Invertible and Inverse Discrete Time Systems -- 2 Discrete and Fast Fourier Transforms (DFT and FFT) -- 2.1 Introduction -- 2.2 Discrete Fourier Transform (DFT) -- 2.2.1 The Discrete Fourier Transform Pairs -- 2.2.2 Four-Point, Six-Point and Eight-Point Twiddle Factors -- 2.2.3 Zero Padding -- 2.3 Relationship of the DFT to Other Transforms -- 2.3.1 Relationship to the Fourier Series Coefficients of a Periodic Sequence -- 2.3.2 Relationship to the Fourier Transform of an Aperiodic Sequence -- 2.3.3 Relationship to the z-Transform -- 2.4 Properties of DFT -- 2.4.1 Periodicity.

2.4.2 Linearity -- 2.4.3 Circular Shift and Circular Symmetric of a Sequence -- 2.4.4 Symmetry Properties of the DFT -- 2.4.5 Multiplication of Two DFTs and Circular Convolution -- 2.4.6 Time Reversal of a Sequence -- 2.4.7 Circular Time Shift of a Sequence -- 2.4.8 Circular Frequency Shift -- 2.4.9 Complex-Conjugate Properties -- 2.4.10 Circular Correlation -- 2.4.11 Multiplication of Two Sequences -- 2.4.12 Parseval's Theorem -- 2.5 Circular Convolution -- 2.5.1 Method of Performing Circular Convolution -- 2.5.2 Performing Linear Convolution Using DFT -- 2.6 Fast Fourier Transform (FFT) -- 2.6.1 Radix-2 FFT Algorithm -- 2.6.2 Radix-4 FFT Algorithms -- 2.6.3 Computation of IDFT through FFT -- 2.6.4 Use of the FFT Algorithm in Linear Filtering and Correlation -- 2.7 In-Plane Computation -- 3 Design of IIR Digital Filters -- 3.1 Introduction -- 3.1.1 Advantages -- 3.1.2 Disadvantages -- 3.2 IIR and FIR Filters -- 3.3 Basic Features of IIR Filters -- 3.4 Performance Specifications -- 3.5 Impulse Invariance Transform Method -- 3.5.1 Relation Between Analog and Digital Filter Poles -- 3.5.2 Relation Between Analog and Digital Frequency -- 3.6 Bilinear Transformation Method -- 3.6.1 Relation Between Analog and Digital Filter Poles -- 3.6.2 Relation Between Analog and Digital Frequency -- 3.6.3 Effect of Warping on the Magnitude Response -- 3.6.4 Effect of Warping on the Phase Response -- 3.7 Specifications of the Lowpass Filter -- 3.8 Design of Lowpass Digital Butterworth Filter -- 3.8.1 Analog Butterworth Filter -- 3.8.2 Frequency Response of Butterworth Filter -- 3.8.3 Properties of Butterworth Filters -- 3.8.4 Design Procedure for Lowpass Digital Butterworth Filters -- 3.9 Design of Lowpass Digital Chebyshev Filter -- 3.9.1 Analog Chebyshev Filter -- 3.9.2 Determination of the Order of the Chebyshev Filter.

3.9.3 Unnormalized Chebyshev Lowpass Filter Transfer Function -- 3.9.4 Frequency Response of Chebyshev Filter -- 3.9.5 Properties of Chebyshev Filter (Type I) -- 3.9.6 Design Procedures for Lowpass Digital Chebyshev IIR Filter -- 3.10 Frequency Transformation -- 3.10.1 Analog Frequency Transformation -- 3.10.2 Digital Frequency Transformation -- 3.11 IIR Filter Design by Approximation of Derivatives -- 3.12 Frequency Response from Transfer Function H(z) -- 3.13 Structure Realization of IIR System -- 3.13.1 Direct Form-I Structure -- 3.13.2 Direct Form-II Structure -- 3.13.3 Cascade Form Realization -- 3.13.4 Parallel Form Realization -- 3.13.5 Transposed Direct Form Realization -- 3.13.6 Transposition Theorem and Transposed Structure -- 3.13.7 Lattice Structure of IIR System -- 3.13.8 Conversion from Direct Form to Lattice Structure -- 3.13.9



Lattice-Ladder Structure -- 4 Finite Impulse Response (FIR) Filter Design -- 4.1 Introduction -- 4.1.1 LTI System as Frequency Selective Filters -- 4.2 Characteristic of Practical Frequency Selective Filters -- 4.3 Structures for Realization of the FIR Filter -- 4.3.1 Direct Form Realization -- 4.3.2 Cascade Form Realization -- 4.3.3 Linear Phase Realization -- 4.3.4 Lattice Structure of an FIR Filter -- 4.4 FIR Filters -- 4.4.1 Characteristics of FIR Filters with Linear Phase -- 4.4.2 Frequency Response of Linear Phase FIR Filter -- 4.5 Design Techniques for Linear Phase FIR Filters -- 4.5.1 Fourier Series Method of FIR Filter Design -- 4.5.2 Window Method -- 4.5.3 Frequency Sampling Method -- 5 Finite Word Length Effects -- 5.1 Introduction -- 5.2 Representation of Numbers in Digital System -- 5.2.1 Fixed Point Representation -- 5.2.2 Floating Point Representation -- 5.3 Methods of Quantization -- 5.3.1 Truncation -- 5.3.2 Rounding -- 5.4 Quantization of Input Data by Analog to Digital Converter.

5.4.1 Output Noise Power Due to the Quantization Error Signal -- 5.5 Quantization of Filter Coefficients -- 5.6 Product Quantization Error -- 5.7 Limit Cycles in Recursive System -- 5.7.1 Zero-Input Limit Cycles -- 5.7.2 Overflow Limit Cycle Oscillation -- 5.8 Scaling to Prevent Overflow -- 6 Multi-rate Digital Signal Processing -- 6.1 Introduction -- 6.2 Advantages and Applications of Multi-rate Signal Processing -- 6.3 Downsampling (Decimator) -- 6.4 Upsampling (Interpolator) -- 6.5 Sampling Rate Conversion by Non-integer Factors Represented by Rational Number -- 6.6 Characteristics of Filter and Downsampler -- 6.7 Linearity and Time Invariancy of Decimator and Interpolator -- 6.7.1 Linearity of Decimator -- 6.7.2 Linearity of an Interpolator -- 6.7.3 Time Invariancy of a Decimator -- 6.7.4 Time Invariancy of an Interpolator -- 6.8 Spectrum of Downsampled Signal -- 6.9 Effect of Aliasing in Downsampling -- 6.10 Spectrum of Upsampling Signal -- 6.10.1 Anti-imaging Filter -- 6.11 Efficient Transversal Structure for Decimator -- 6.12 Efficient Transversal Structure for Interpolator -- 6.13 Identities -- 6.14 Polyphase Filter Structure of a Decimator -- 6.14.1 The Polyphase Decomposition -- 6.14.2 Polyphase Structure of a Decimator Using z-Transform -- 6.14.3 Polyphase Structure of an Interpolator -- 6.14.4 Polyphase Structure of an Interpolator Using z-Transform -- 6.15 Polyphase Decomposition of IIR Transfer Function -- 6.16 Cascading of Upsampler and Downsampler -- 6.17 Multi-stage Rating of Sampling Rate Conversion -- 6.18 Implementation of Narrow Band Lowpass Filter -- 6.19 Adaptive Filters -- 6.19.1 Concepts of Adaptive Filtering -- 6.19.2 Adaptive Noise Canceller -- 6.19.3 Main Components of the Adaptive Filter -- 6.19.4 Adaptive Algorithms -- Index.



3.

Record Nr.

UNINA9910707004403321

Autore

Sanchez Braulio V.

Titolo

Spherical harmonics analysis of the ECMWF global wind fields at the 10-meter height level during 1985 : a collection of figures illustrating results / / Braulio V. Sanchez, Masahiro Nishihama

Pubbl/distr/stampa

Greenbelt, Maryland, : National Aeronautics and Space Administration, Goddard Space Flight Center, July 1997

Descrizione fisica

1 online resource (v, 61 pages) : illustrations, maps

Collana

NASA technical memorandum ; ; 104648

Soggetti

Spherical harmonics

Atmospheric circulation

Wind velocity

Wind effects

Wind (meteorology)

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed April 7, 2016).

"July 1997."

"Performing organization: Goddard Space Flight Center, Greenbelt, Maryland"--Report documentation page.

Nota di bibliografia

Includes bibliographical references (page 57).