|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910590096103321 |
|
|
Autore |
Dai Ying |
|
|
Titolo |
Calculations and Simulations of Low-Dimensional Materials : Tailoring Properties for Applications |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2022 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-83213-0 |
3-527-83212-2 |
3-527-83211-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (259 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
WeiWei |
MaYandong |
NiuChengwang |
|
|
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 An Introduction to Density Functional Theory (DFT) and Derivatives -- 1.1 The Problem of a N‐electron System -- 1.2 The Thomas-Fermi Theory for Electron Density -- 1.3 The First Hohenberg-Kohn Theorem -- 1.4 The Second Hohenberg-Kohn Theorem -- 1.5 The Kohn-Sham Equations -- 1.6 The Local Density Approximation (LDA) -- 1.7 The Generalized Gradient Approximation (GGA) -- 1.8 The LDA+U Method -- 1.9 The Heyd-Scuseria-Ernzerhof Density Functional -- 1.9.1 Introduction to Tight‐Binding Approximation -- 1.9.2 Matrix Elements of Tight‐Binding Hamiltonian -- 1.9.3 Matrix Elements with the Help of Wannier Function -- 1.9.4 Example for a Graphene Model -- 1.10 Introduction to k ⋅ p Perturbation Theory -- 1.10.1 Solution for Non‐degenerate Bands -- 1.10.2 Solution for Degenerate Bands -- 1.10.3 Explicit Hamiltonian of k ⋅ p Perturbation Theory -- References -- Chapter 2 New Physical Effects Based on Band Structure -- 2.1 Valley Physics -- 2.1.1 Spontaneous Valley Polarization -- 2.1.2 Valley Polarization by Foreign Atom Doping -- 2.1.3 Valley Polarization in van der Waals Heterostructures -- 2.2 Rashba Effects -- References -- |
|
|
|
|