1.

Record Nr.

UNINA9910585975003321

Autore

Polushkin Vladimir

Titolo

Nuclear Electronics with Quantum Cryogenic Detectors

Pubbl/distr/stampa

Newark : , : John Wiley & Sons, Incorporated, , 2022

©2022

ISBN

9781119834694

9781119834687

Edizione

[2nd ed.]

Descrizione fisica

1 online resource (448 pages)

Soggetti

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- Chapter 1 Interaction of the Nuclear Radiation with Detector Absorbers -- Introduction -- 1.1  The Intrinsic Quantum Efficiency of Radiation Detectors -- 1.2  Detection of Charged Particles -- 1.2.1  Light-Charged. Particles -- 1.2.2  The Continuous "Braking" Radiation .(Bremsstrahlung) -- 1.2.3  Backscattering of Charged Particles -- 1.2.4  Heavy-Charged. Particles -- 1.3  Primary Interactions of X- and γ-Ray. Photons with Solid-State. Absorbers -- 1.3.1  Photoelectric Effect -- 1.3.2  Compton Scattering -- 1.3.3  The Pair Production -- 1.3.4  Attenuation of Photon Radiation in Solid-State. Detector Absorbers -- 1.4  Detection of Neutrons with Solid-State. Radiation Sensors -- 1.4.1  10B(n,α)7Li Nuclear Reaction -- 1.4.2  6Li(n,α)3H Nuclear Reaction -- 1.5  Heat Generation in Athermal Quasiparticle Absorbers -- References -- Chapter 2 Radiation Detectors with Superconducting Absorbers -- Introduction -- 2.1  Selected Topics of the Superconductivity Theory -- 2.1.1  The Electron-Phonon. Interaction and Cooper Pairing Mechanisms -- 2.1.2  The Behavior of Superconductors in the Magnetic Field -- 2.1.3  The Tunnel Josephson Junction -- 2.1.4  The Superconducting Transmission Line: The Kinetic Inductance -- 2.2  Superconducting Absorbers: The Down-Conversion. of Particle Energy and Intrinsic Energy Resolution -- 2.2.1  The Energy Down-Conversion. Process in Superconducting Absorbers



-- 2.2.2  The Intrinsic Energy Resolution of Quasiparticle Detectors with Superconducting Absorbers -- 2.3  Transport in the Nonequilibrium Superconductors: Incomplete Charge Collection Mechanisms -- 2.3.1  The Recombination Time of Quasiparticles in Superconductor Absorbers -- 2.3.2  The Rothwarf-Taylor (R-T) Phenomenological Framework.

2.3.3  The Diffusion of Quasiparticles in Thin-Film. Superconducting Absorbers: Incomplete Charge Collection -- 2.3.4  Noise Equivalent Power (NEP) of Superconducting Absorbers -- 2.4  Quasiparticle Radiation Detectors with Superconducting Tunnel Junction (STJ) Readout -- 2.4.1  The Bandgap Engineering and Fabrication of STJ Detectors -- 2.4.2  The Giaever I-V Curve of the STJs -- 2.4.3  The Tunneling Mechanisms in STJs -- 2.4.4  Pileup and Count Rate Capability of the STJ Detectors -- 2.5  Quasiparticle Radiation Detectors with Microwave Kinetic Inductance Sensors (MKID) -- 2.5.1  The Operating Principle of Microwave Kinetic Inductance Sensors -- 2.5.2  The DROID X-ray. Detector with Microwave Kinetic Inductance Sensor Readout -- 2.6  Integration of STJ Detectors with Microwave SQUID Multiplexed Readout -- 2.6.1  Bandwidth Considerations -- References -- Chapter 3 Radiation Detectors with Normal Metal Absorbers -- Introduction -- 3.1  Spectrometers Based on Transition-Edge. Sensor (TES) Microcalorimeters -- 3.1.1  Fundamentals of TES Design -- 3.1.2  The Electrothermal Feedback in TES Microcalorimeters -- 3.2  TES Microcalorimeters with Microwave SQUID Readout (μMUX): Imaging Cameras -- 3.2.1  The Quantum Efficiency -- 3.2.2  The Energy Resolution -- 3.2.3  The Throughput -- 3.2.4  The Bandwidth Per the Core TES Channel -- 3.3  Hot Electron Microcalorimeter with the NIS Tunnel Junction Thermometer -- References -- Chapter 4 Radiation Detectors with Semiconductor Absorbers -- Introduction -- 4.1  Semiconductor Transport -- 4.1.1  Valence Bond and Energy Band Models -- 4.1.2  Carrier Scattering Mechanisms and Mobility in Semiconductor Bulk Materials -- 4.1.3  Carrier Generation and Recombination (G-R) Processes -- 4.1.4  Effects of the G-R Transport on the Performance of Radiation Detectors.

4.1.5  Tunneling-Assisted. Transport in Semiconductor Materials -- 4.1.6  Tunneling Transport Across the Thin Dielectric Barrier -- 4.1.7  The Semiconductor-Vacuum. Interface: Surface Transport -- 4.2  Macroscopic Modeling of Semiconductor Devices -- 4.2.1  Microscopic Transport Models Based on the Schrödinger Equation -- 4.2.2  The Semiclassical Transport Models -- 4.2.3  The Initial and Boundary Conditions in Device Modeling: The Ramo-Shockley Theorem -- 4.3  Front Windows in Semiconductor Radiation Detectors -- 4.3.1  Entrance Window Based on Schottky Barrier Junction -- 4.3.2  Front Window Based on Metal-Insulator-Semiconductor. (MIS) Junction -- 4.3.3  The p-n Junction-Based. Front Window in Radiation Detectors -- 4.4  Fabrication of Silicon Drift Detectors (SDD) -- 4.4.1  The Epitaxially Grown Ultra-shallow. p+n Junction Entrance Windows -- 4.4.2  The Pure Boron Technology for Ultra-shallow. Entrance Windows -- 4.5  Semiconductor Drift Detectors -- 4.5.1  Semiconductor Detectors: Operation Principle and Performance Specifications -- 4.5.2  The Intrinsic Energy Resolution of Semiconductor Detectors -- 4.5.3  Time Response of SDDs -- 4.6  The Quantum Calorimetric Electron-Hole. Detector with Semiconductor Absorber -- 4.6.1  The Phonon System Dynamics in Semiconductor Materials -- 4.6.2  The Design and Performance of the Quantum Electron-Hole. Detector -- References -- Chapter 5 Front-End. Readout Electronic Circuits for Quantum Cryogenic Detectors -- Introduction -- 5.1  JFET Transconductance Preamplifiers -- 5.1.1  Principles of JFET Transconductance Amplifiers



-- 5.1.2  Settling Time of Preamplifiers -- 5.2  Dynamics and Noise of JFET Amplifiers -- 5.2.1  Static and Dynamic Parameters of JFETs -- 5.2.2  Noise Characteristics of JFETs -- 5.2.3  PentaFET: High Precision Reset Mechanism -- 5.2.4  The JFET Cascode Stage.

5.2.5  The Source Follower-Based. Charge-Sensitive. Preamplifier -- 5.2.6  The Differential Stage Based on Matched JFETs -- 5.3  The Low Noise Amplifiers Based on High Electron Mobility Transistor (HEMT) -- 5.4  The dc SQUID Current Amplifiers -- 5.4.1  The dc SQUID as a Superconducting Parametric Amplifier -- 5.4.2  The dc SQUID with an Intermediary Input Transformer -- 5.4.3  The Coupled Energy Resolution of a Double Transformer dc SQUID -- 5.4.4  The dc SQUID Readout Electronics -- 5.4.5  The SQUID with the Digital Bode FLL Controller -- 5.4.6  The dc SQUID Amplifier in the Small-Signal Limit (Noise) -- 5.4.7  SQUID Current Amplifier in the Large Signal Limit (Dynamics) -- 5.4.8  SQUID Current Amplifier in the Large Signal Limit (Noise) -- 5.5  The dc SQUID Current Amplifier at Ultralow Temperature (ULT) -- 5.5.1  A Double-Stage. Amplifier with a Single Front ULT SQUID -- 5.5.2  A Double-Stage. Amplifier with the Front ULT SQUID Array -- 5.6  Microwave SQUID Parametric Amplifiers -- 5.6.1  Operation Principle of Microwave SQUIDs with External Pumping (MSQUIDs) -- 5.6.2  The Nonlinearities in the MSQUID Readout -- 5.6.3  The Flux Ramp Modulation Methodology -- 5.6.4  Performance of MSQUID Current Amplifier -- 5.7  Design Methodology of Analog Circuitries -- 5.7.1  The Laplace Transform: Transfer Functions of Electronic Networks -- 5.7.2  Design of Analog Pulse-Shaping. Filter Cells -- 5.7.3  Design of Low-Pass. Filters -- 5.7.4  Graphical Methods of Analysis and Synthesis in the Frequency Domain -- 5.7.5  The Describing Function of Nonlinear Elements in the Frequency Domain -- 5.7.6  Systems with Synchronous Multipliers -- References -- Chapter 6 The Energy Resolution of Radiation Spectrometers -- Introduction -- 6.1  Signal-to-Noise. Ratio, Equivalent Noise Charge of Radiation Spectrometers: General Definitions.

6.2  Energy Resolution of Quasiparticle Detectors (STJs, SDDs) -- 6.2.1  The Tunnel Junction Coupled to a JFET Transconductance Amplifier -- 6.2.2  Energy Resolution of STJ Sensors Readout with SQUID Current Preamps -- 6.3  Optimal Filtration in Radiation Spectrometers -- 6.4  Energy Resolution of TES Microcalorimeters -- 6.5  Matrix Readout Multiplexing of STJ Detectors -- 6.5.1  Matrix Readout of STJ Sensors with JFET Transconductance Amplifiers -- 6.5.2  Matrix Readout with SQUID Current Amplifiers -- 6.6  Time-Division. Multiplexor (TDM) -- 6.7  Frequency Division Multiplexing with Microwave SQUIDs (μMUX) -- 6.8  Code Division Multiplexing (CDM): Spread-Spectrum. Modulation (SSM) -- References -- Chapter 7 Signal Processing in Radiation Spectrometers -- Introduction -- 7.1  Signal Conditioning Units -- 7.1.1  Overview of the Digital Pulse Processing Architectures -- 7.1.2  AC-Coupled. Digital Spectrometers -- 7.1.3  Digital Pulse Processing with the Moving Window Deconvolution -- 7.1.4  DC-Coupled. Digital Pulse Processors -- 7.1.5  DC-Coupled. Digital Pulse Processors with a Sliding Window Signal Conditioner -- 7.2  Analog-to-Digital. Conversion -- 7.2.1  Analog-to-Digital. Converters: Basic Information -- 7.2.2  The Quantization Noise Model of ADC -- 7.2.3  Nonlinearities of ADC -- 7.2.4  Aperture Time of ADCs -- 7.2.5  Aperture Uncertainty of ADCs -- 7.2.6  Reduction of the Differential Nonlinearity with the Sliding Scale Method -- 7.3  Digital Filtration -- 7.3.1  Z-Transform. Methodology -- 7.3.2  Design of Digital Filters with Z-transform -- 7.3.3  The Stability of Digital Filters -- 7.3.4  Trapezoidal Pulse-Shaping. Digital Filter -- 7.3.5  Moving Average Pulse Processing -- 7.4  Throughput of Digital Spectrometers -- 7.4.1  Pulse Recognition



Channel: Pileup Detection -- 7.4.2  Timing Resolution of Digital Spectrometers.

7.4.3  The Pileup Decoding in Digital Pulse Processors.