1.

Record Nr.

UNINA9910584587503321

Titolo

Reducing the Greenhouse Gas Emissions of Water and Sanitation Services : Overview of emissions and their potential reduction illustrated by utility know-how / / edited by Alexandre Alix [and three others]

Pubbl/distr/stampa

London, UK : , : IWA Publishing, , 2022

©2022

Descrizione fisica

1 online resource (59 pages) : illustrations

Disciplina

628.1091732

Soggetti

Municipal water supply

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Sommario/riassunto

The scientific evidence contained in the three volumes of the 6th IPCC report (AR6), published between August 2021 and April 2022, are another reminder of the urgent need to respect the 2015 Paris Agreement. 195 countries agreed to the goal of limiting long-term global temperature increase to "well below 2°C" compared to pre-industrial levels and to pursue efforts to limit the increase to 1.5°C by massively reducing their emissions of carbon dioxide and other greenhouse gases (GHGs). Water and climate questions are usually addressed from the perspective of adaptation to climate change. For urban water services the mitigation aspect has been less studied up till now. These considerations fit into the broader context of the interdependence of energy and water (Water-Energy Nexus). This report approaches the question from the angle of energy use in the water sector rather than the better-known water requirements for the energy sector. Reducing GHG emissions in urban water management requires reducing both fossil energy requirements and direct emissions of nitrous oxide and methane. Finally, it must be said that the need to reduce the GHG emissions of water and sanitation services goes with the growing demand for water. It should increase by 50% between now



and 2030 worldwide due to the combined effects of population growth, economic development, and the shift in consumer patterns. This synthetic report aims to provide an overview of possible levers to reduce the greenhouse gas emissions of water and sanitation services and provides an analysis of how adaptation measures can embrace this low-carbon approach.

2.

Record Nr.

UNINA9910508447603321

Autore

Khapalov Alexander Y.

Titolo

Bio-mimetic swimmers in incompressible fluids : modeling, well-posedness, and controllability / / Alexander Khapalov

Pubbl/distr/stampa

Cham, Switzerland : , : Birkhäuser, , [2021]

©2021

ISBN

3-030-85285-7

Descrizione fisica

1 online resource (177 pages)

Collana

Advances in Mathematical Fluid Mechanics

Disciplina

620.106

Soggetti

Fluid mechanics - Mathematical models

Mecànica de fluids

Models matemàtics

Biomimètica

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 Modeling: Mimicking the Nature -- 1.2 Mathematical Approach to Swimming Modeling -- 1.3 Swimming Controllability -- 1.4 Related Selected Bibliography -- Part I Modeling of Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 2 Bio-Mimetic Fish-Like Swimmers in a 2D Incompressible Fluid: Empiric Modeling -- 2.1 Swimmer's Body as a Collection of Separate Sets -- 2.2  Bio-Mimetic Fish- and Snake-Like Swimmers -- 2.3 Swimmer's Internal Forces -- 2.3.1 Rotational Internal Forces -- 2.3.2 Elastic Internal Forces -- 2.4 Swimmer's Geometric Controls -- 2.5 Internal Forces and Conservation of



Momenta -- 2.5.1 About Swimmers with Body Parts Different in Mass -- 2.6 Fluid Equations: Non-stationary Stokes and Navier-Stokes Equations in 2D -- 2.7 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 2.8 A Model of a 2D Fish-Like Bio-Mimetic Swimmer: The Case of Navier-Stokes Equations -- 3 Bio-Mimetic Aquatic Frog- and Clam-Like Swimmers in a 2D Fluid: Empiric Modeling -- 3.1 A Bio-Mimetic Aquatic Frog-Like Swimmer in a 2D Incompressible Fluid -- 3.2 A Bio-Mimetic Clam-Like Swimmer in a 2D Incompressible Fluid -- 4 Bio-Mimetic Swimmers in a 3D Incompressible Fluid: Empiric Modeling -- 4.1 Rotational Forces in 3D -- 4.2 A Model of a 3D Fish-Like Bio-Mimetic Swimmer: The Case of Stokes Equations -- 4.3 A Bio-Mimetic Frog-Like Swimmer in a 3D Incompressible Fluid -- 4.4 A Bio-Mimetic Clam-Like Swimmer in a 3D Incompressible Fluid -- Part II Well-Posedness of Models for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 5 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers: The Case of Stokes Equations -- 5.1 Notations -- 5.2 Swimmer's Body -- 5.3 Initial- and Boundary-Value Problem Setup -- 5.3.1 Estimates for Internal Forces.

5.4 Main Result: Existence and Uniqueness of Solutions -- 5.5 Proof of Theorem 5.1 -- 5.5.1 Preliminary Results: Decoupled Equation for zi(t)'s -- 5.5.2 Three Decoupled Solution Mappings for (5.3.1) -- 5.5.2.1 Solution Mapping A for  zi(t), i = 1, …, n -- 5.5.2.2 Solution Mapping for Decoupled Non-stationary Stokes Equations -- 5.5.2.3 The Force Term -- 5.5.3 Proof of Theorem 5.1 -- 5.5.3.1 Proof of Existence: A Fixed Point Argument -- 5.5.3.2 Proof of Uniqueness -- 6 Well-Posedness of 2D or 3D Bio-Mimetic Swimmers… -- 6.1 Problem Setup and Main Results -- 6.1.1 Problem Setting -- 6.1.2 Main Results -- 6.2 Proofs of the Main Results -- 6.2.1 Solution Mapping for Decoupled Navier-Stokes Equations -- 6.2.2 Preliminary Results -- 6.2.3 Continuity of BNS -- 6.2.4 Proof of Theorems 6.1 and 6.2 -- Part III Micromotions and Local Controllability for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 7 Local Controllability of 2D and 3D Swimmers: The Case of Non-stationary Stokes Equations -- 7.1 Definitions of Controllability for Bio-Mimetic Swimmers -- 7.2 Main Results -- 7.2.1 Main Results -- 7.2.2 Main Results in Terms of Projections of Swimmers' Forces on the Fluid Velocity Space -- 7.3 Preliminary Results -- 7.3.1 Implicit Solution Formula -- 7.3.2 Differentiation with Respect to  vj's and  wk's -- 7.4 Volterra Equations for  d zi (τ) d vj's -- 7.5  Auxiliary Estimates -- 7.6 Proof of Theorem 7.2 -- 7.7 Proof of Theorem 7.1 -- 7.7.1 Step 1 -- 7.7.2 Step 2 -- 8 Local Controllability of 2D and 3D Swimmers: The Case of Navier-Stokes Equations -- 8.1 Problem Setting -- 8.2 Main Results -- 8.2.1 Main Results: Micromotions in 2D and 3D -- 8.2.2 Main Results: Local Controllability in 2D -- 8.2.3 Main Results: Local Controllability in 3D -- 8.2.4 Methodology of Controllability Proofs -- 8.3 Derivatives ∂u∂vj |vjs=0 : 2D Case.

8.3.1 Auxiliary Notations -- 8.3.2 Equation for wh and its Well-Posedness -- 8.3.3 Auxiliary Regularity Results for Parabolic Systems from Lad2 -- 8.3.4 Auxiliary System of Linear Equations Systems -- 8.3.5 Derivatives  ∂u∂vj |vjs=0 -- 8.4 Derivatives ∂zi∂vj | vjs = 0 as Solutions to Volterra Equations: 2D Case -- 8.4.1 Expression for  zi(t -- h) - zi(t -- 0)h -- 8.4.2 Evaluation of the Integrand in the 1st Term on the Right in (8.4.2) -- 8.4.3 Volterra Equations -- 8.5 Proofs of Theorems 8.1 and 8.2 -- 8.5.1 Further Modification of (8.4.12) -- 8.5.2 Proofs of Theorem 8.1 and of Theorem 8.2 in the Case of Local Controllability Near Equilibrium (i.e., When  u0 = 0) -- 8.5.2.1 Step 1 -- 8.5.2.2 Step 2 -- 8.5.2.3 Step 3: Proof of Theorem 8.1 when u0 = 0 -- 8.5.2.4 Step 4 -- 8.5.3 Proof of Theorems 8.2 and 8.1 -- 8.5.3.1



Step 1 -- 8.5.3.2 Step 2 -- 8.6 Proofs of Theorems 8.1 and 8.4 -- 8.6.1 Adjustments in Sects.8.3 and 8.4 -- 8.6.2 Adjustments in Sect.8.5 -- 8.6.2.1 Section 8.5.2.4, Step 4 in the 3D Case -- 8.6.2.2 Section 8.5.3 in the 3D Case -- Part IV Transformations of Swimmers' Internal Forces Acting in 2D and 3D Incompressible Fluids -- 9 Transformation of Swimmers' Forces Acting in a 2D Incompressible Fluid -- 9.1 Main Results -- 9.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 2D Fluid -- 9.1.2 Transformations of Forces Acting Upon Small Rectangles in an Incompressible 2D Fluid -- 9.1.3 Transformations of Forces Acting Upon Small Discs in an Incompressible 2D Fluid -- 9.1.4 Interpretation of Theorems 9.3 and 9.4: What Shape of S Is Better for Locomotion? -- 9.2 Proof of Theorem 9.1 -- 9.2.1 Step 1 -- 9.2.2 Step 2: Green's Formula -- 9.2.3 Step 3: Evaluation of the Integral of the Gradient of the 1-st Terms on the Right in (9.2.7) Over  A.

9.2.4 Step 4: Evaluation of the Integral of the Gradient of the 2-nd Term in (9.2.7) Over  A -- 9.3 Proof of Theorem 9.2 -- 9.3.1 Step 1 -- 9.3.2 Step 2 -- 9.3.3 Step 3 -- 9.3.4 Step 4 -- 9.4 Proofs of Theorems 9.3 and 9.4 -- 9.4.1 Proof of Theorem 9.3 -- 9.4.2 Step 1 -- 9.4.3 Step 2 -- 9.4.4 Step 3 -- 9.4.5 Step 4 -- 9.4.6 Step 5 -- 9.4.7 Step 6 -- 9.4.8 Step 7 -- 9.4.9 Step 8 -- 9.4.10 Step 9 -- 9.4.11 Proof of Theorem 9.4: Forces Acting Upon Small Discs in a Fluid -- 10 Transformation of Swimmers' Forces Acting in a 3D Incompressible Fluid -- 10.1 Main Results -- 10.1.1 Qualitative Estimates for Forces Acting Upon Small Sets in an Incompressible 3D Fluid -- 10.1.2 A General Formula for 1meas{S}S(PH bξ)(x)dx -- 10.1.3 The Case of Parallelepipeds -- 10.1.4 Spheres in 3D -- 10.1.5 Instrumental Observations in Relation to Controlled Steering -- 10.2 Proofs of Theorems 10.1 and 10.2 -- 10.2.1 Proof of Theorem 10.1 -- 10.2.1.1 Step 1 -- 10.2.1.2 Step 2: Green's Formula -- 10.2.1.3 Step 3: Evaluation of the First Term on the Right in (10.2.7)over A -- 10.2.1.4 Step 4 -- 10.2.1.5 Step 5 -- 10.2.2 Proof of Theorem 10.2 -- 10.2.2.1 Step 1 -- 10.2.2.2 Step 2 -- 10.2.2.3 Step 3 -- 10.2.2.4 Step 4: Calculation of the Terms in the Last Line in (10.2.26) -- 10.3 Proofs of Main Results -- 10.3.1 Proofs of Theorems 10.3-10.5 -- 10.3.1.1 Auxiliary Formulas -- 10.3.1.2 Proof of Theorem 10.3 -- 10.3.1.3 Proof of Theorem 10.4 -- 10.3.1.4 Proof of Theorem 10.5 -- Part V Global Steering for Bio-Mimetic Swimmers in 2D and 3D Incompressible Fluids -- 11 Swimming Capabilities of Swimmers in 2D and 3D Incompressible Fluids: Force Controllability -- 11.1 Discussion of Concepts for Global Swimming Locomotion -- 11.2 An Instrumental Observation -- 11.3 Illustrating Examples in 2D: A Snake- or Fish-Like and Breaststroke Locomotions.

11.3.1 Fish- or Snake-Like Locomotion to the Left -- 11.3.2 Turning Motion of One Rectangle, While the Other Two Retain Their Position -- 11.3.3 Breaststroke Locomotion for a Swimmer Consisting of 3 Rectangles: A Bio-Mimetic Clam (Scallop) -- 11.3.4 Breaststroke Locomotion for a Swimmer Consisting of 5 Rectangles: A Bio-Mimetic Aquatic Frog -- 11.4 Breaststroke Pattern for a Swimmer Consisting of 3 Discs -- 11.5 Illustrating Examples in 3D -- 11.6 Breaststroke Locomotion of a Swimmer Consisting of 3 Balls in 3D -- References.