| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910482161703321 |
|
|
Autore |
Livy |
|
|
Titolo |
Historiarum libri. By Titus Livius. Ed. J.F. Gronovius [volume 2] [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
Online resource (3 volumes, 12°) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Reproduction of original in Koninklijke Bibliotheek, Nationale bibliotheek van Nederland. |
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910711100603321 |
|
|
Autore |
Schmucker, Kurt J. |
|
|
Titolo |
Object-oriented programming for the Macintosh / Kurt J. Schmucker |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
hasbrouck Heights, N.J., : Hayden book, c1986 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910583096103321 |
|
|
Titolo |
Graphene-based electrochemical sensors for biomolecules / / edited by Alagarsamy Pandikumar, Perumal Rameshkumar |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Amsterdam, Netherlands : , : Elsevier, , 2019 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (366 pages) |
|
|
|
|
|
|
Collana |
|
Micro & nano technologies series |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electrochemical sensors |
Graphene |
Nanocomposites (Materials) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Front Cover -- Graphene-Based Electrochemical Sensors for Biomolecules -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- Chapter 1: Graphene-Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensors -- 3. Importance of Biomolecules -- 4. Graphene -- 4.1. Structure and Properties of Graphene -- 4.2. Synthesis of Graphene -- 4.2.1. Top-Down Methods -- 4.2.2. Bottom-Up Approach -- 5. Electrode Fabrications With Graphene -- 6. Electrochemical Determination of Neurotransmitters, Vitamins, and Amino Acids -- 7. Electrochemical Determination of Purine Derivatives -- 7.1. Electrochemical Determination of UA, XN, and HXN -- 7.2. Electrochemical Determination of DNA Purine Bases (A and G) -- 7.3. Electrochemical Determination of Purine Nucleotides and Nucleosides -- 7.4. Electrochemical Determination of CAF, TP, and AP -- 8. Conclusion and Future Prospects -- References -- Chapter 2: Functionalized Graphene Nanocomposites for Electrochemical Sensors -- 1. Introduction -- 1.1. Functionalized Graphene Nanocomposites -- 1.2. Electrochemical Detection of Biomolecules Using Functionalized Graphene Nanocomposites -- 2. Detection of Nitric Oxide -- 3. Detection of Glucose -- 4. Sensing of Cholesterol -- 5. Detection of Important Neurotransmitters -- 6. Concluding Remarks and Future Prospects -- References -- Chapter 3: Doped-Graphene Modified Electrochemical |
|
|
|
|
|
|
|
|
|
Sensors -- 1. Introduction -- 2. Heteroatom-Doped Graphene -- 2.1. Element Boron -- 2.2. Element Nitrogen -- 2.3. Element Phosphorus -- 2.4. Element Sulfur -- 3. Heteroatoms Doped Graphene for Electrochemical Sensor Applications -- 3.1. Electrochemical Detection of Hydrogen Peroxide -- 3.2. Electrochemical Detection of Dopamine -- 3.3. Electrochemical Detection of NADH -- 3.4. Electrochemical Detection of Glucose. |
3.5. Electrochemical Detection of Ascorbic Acid -- 4. Conclusion and Future Outlooks -- References -- Chapter 4: Graphene-Metal Modified Electrochemical Sensors -- 1. Introduction -- 2. Synthesis of Graphene-Metal NP Hybrids -- 2.1. Direct Mixing Method -- 2.2. Electrodeposition Method -- 2.3. Photochemical Method -- 2.4. Substrate Enhance Electroless Deposition Method -- 2.5. Chemical Reduction Method -- 2.6. Microwave Assisted Synthesis Method -- 2.7. Electrolytic Deposition Method for Synthesis of Graphene-Metal NP Hybrids -- 3. Sensing Application of Graphene-Metal NP Hybrids -- 3.1. Dopamine/Uric Acid/Ascorbic Acid Sensor -- 3.2. Glucose Sensor -- 3.3. Hydrogen Peroxide Sensor -- 3.4. Immunological Sensor -- 3.5. Epinephrine and Norepinephrine Sensor -- 3.6. Levofloxacin Sensor -- 3.7. Ethanol Sensor -- 4. Conclusion -- References -- Further Reading -- Chapter 5: Graphene-Metal Oxide Nanocomposite Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Detection of Biomolecules -- 2.1. Dopamine -- 2.2. Glucose -- 2.3. NADH and Cholesterol Sensing -- 2.3.1. Nicotinamide Adenine Dinucleotide Hydrogen -- 2.3.2. Cholesterol Detection -- 3. Conclusion and Future Perspectives -- References -- Chapter 6: Graphene-Metal Chalcogenide Modified Electrochemical Sensors -- 1. Introduction -- 2. Electrochemical Sensing of Biomolecules Using Graphene-Metal Chalcogenide Composites -- 3. Electrochemical Sensing of Biomolecules Based on Enzymatic and Nonenzymatic Approaches Using Graphene-Metal Chalcogeni ... -- 4. Conclusion and Future Prospects -- References -- Chapter 7: Graphene-Polymer Modified Electrochemical Sensors -- 1. Introduction -- 2. Polymers -- 2.1. Synthetic Polymers -- 2.1.1. Polypyrrole -- 2.1.2. Polyaniline -- 2.1.3. Poly(3,4-ethylenedioxythiophene) -- 2.1.4. Nafion -- 2.2. Natural Polymers -- 2.2.1. Chitosan. |
2.2.2. Cellulose -- 3. Graphene-Conductive Polymer Hybrid Materials for Development of Electrochemical Sensors -- 3.1. Graphene-Polypyrrole Hybrid Electrochemical Determination of Bioanalytes -- 3.2. Graphene-Polyaniline Hybrid Electrochemical Determination of Bioanalytes -- 3.3. Graphene-Poly(3,4-ethylenedioxythiophene) Hybrid Electrochemical Determination of Bioanalytes -- 3.4. Graphene-Nafion Hybrid Electrochemical Determination of Bioanalytes -- 4. Graphene-Biopolymer Hybrid Materials for Development of Electrochemical Sensors -- 4.1. Graphene-Chitosan Hybrid Electrochemical Determination of Bioanalytes -- 4.2. Graphene-Cellulose Hybrid Electrochemical Determination of Bioanalytes -- 5. Conclusion and Future Prospects -- References -- Chapter 8: Graphene-Carbon Nanotubes Modified Electrochemical Sensors -- 1. Introduction -- 2. Use of Nanomaterials in Sensors -- 3. Introduction to Graphene-Carbon Nanotube Composite Materials and Their Advantages -- 4. Electrochemical Sensor Application Fields of Graphene-Carbon Nanotube Composites -- 4.1. Biomolecule Sensors -- 4.2. Pharmaceutical Sensors -- 4.3. Food Sensors -- 5. Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 9: Graphene-Carbon Nitride-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Synthesis of Materials -- 2.1. Preparation of Carbon Nitride Nanomaterials -- 2.2. Preparation of |
|
|
|
|
|
|
|
|
|
Graphene-Carbon Nitride-Based Nanocomposite Materials and Electrode Modification -- 3. Characterization of Materials -- 3.1. Brunauer-Emmett-Teller Surface Area and X-Ray Diffraction -- 3.2. UV-Visible and Fluorescence Spectroscopy -- 3.3. Fourier Transform Infrared Spectroscopy -- 3.4. Raman Spectroscopy -- 3.5. X-Ray Photoelectron Spectroscopy -- 3.6. Transmission Electron Microscopy -- 4. Electrochemical Behavior and Sensing Applications. |
5. Conclusions and Future Prospects -- References -- Chapter 10: Graphene-Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors -- 1. Introduction -- 1.1. Electrochemical Sensors -- 1.2. Advantages of Electrochemical Sensors -- 1.3. Types of Carbon Nanomaterials -- 1.3.1. Carbon Nanotubes -- 1.3.2. Fullerene -- 1.3.3. Graphene -- 1.3.4. Reduced Graphene Oxide -- 1.3.5. Graphene Nanoribbons -- 1.4. Types of Clay Minerals -- 1.4.1. Layered Double Hydroxides -- 1.4.2. Montmorillonite -- 1.4.3. Sepiolite -- 1.4.4. Zeolites -- 1.5. Graphenes in Sensors -- 1.5.1. Graphene and Carbon Nanotubes Nanohybrid Sensors -- 1.5.2. Graphene and Metal Oxide Nanohybrid Sensors -- 1.5.3. Electrochemistry of Graphene -- 1.5.4. Electrochemistry of Clay Particles -- 1.5.5. Importance of Graphene and Clay Nanohybrid Electrodes for Sensor Applications -- 2. Graphene-Clay Nanohybrid Based Electrochemical Sensors -- 2.1. Types of Clay-Graphene Nanohybrid Synthesis -- 2.2. Graphene-Clay Hybrid-Based Electrochemical Sensors -- 2.3. Graphene-Clay Hybrid-Based Gas Sensors -- 2.4. Graphene-Clay Hybrid-Based Biological Sensors (Glucose/H2O2) -- 2.5. Other Graphene-Clay Hybrid-Based Biosensors -- 3. Conclusion and Future Trends -- References -- Further Reading -- Chapter 11: Graphene-Metal-Organic Framework-Modified Electrochemical Sensors -- 1. Introduction -- 2. Mechanism of Charge Transfer in Graphene-MOFs -- 3. Fabrication of Graphene-MOF -- 3.1. Electrophoretic Deposition -- 3.2. Hybrid Hydrothermal Synthesis -- 3.3. Sonochemical Synthesis -- 3.4. In Situ Crystallization Method -- 4. Graphene-MOFs as Electrochemical Sensors in Sensing Biomolecules -- 4.1. Graphene-MOF-Based Glucose Sensors -- 4.2. Graphene-MOF-Based Immunosensors -- 4.3. Graphene-MOF-Based Dopamine Biosensors -- 4.4. Other Graphene-MOF-Based Biomolecular Sensors. |
5. Conclusion and Future Perspectives -- References -- Chapter 12: Graphene Paper-Based Electrochemical Sensors for Biomolecules -- 1. Introduction -- 2. Fabrication of Graphene Paper Electrodes -- 2.1. Wet Chemical Process -- 2.2. Dry Chemical Process -- 2.3. Electrophoretic and Electrospray Deposition Process -- 2.4. Other Methods -- 3. Activation Strategies of Graphene Papers -- 3.1. Posttreatment Process -- 3.2. Metal Anchoring -- 3.3. Metal Oxide Modifications -- 3.4. Polymer Functionalization -- 3.5. Biomolecule Immobilization -- 3.6. Elemental Doping -- 4. Applications of Graphene Paper as Electrochemical Sensors for Biomolecules -- 4.1. Sensing of Glucose and Hydrogen Peroxide -- 4.2. Sensing of Microbes -- 4.3. Other Uses -- 5. Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- Chapter 13: Graphene-Containing Microfluidic and Chip-Based Sensor Devices for Biomolecules -- 1. Introduction -- 2. Graphene and Derivatives -- 3. General Characteristics of Graphene -- 4. Microfluidic Integrated Biosensors and Sensors for Detection of Biomolecules -- 5. Conclusion and Future Prospects -- Acknowledgments -- References -- Index -- Back Cover. |
|
|
|
|
|
|
Sommario/riassunto |
|
Graphene-Based Electrochemical Sensors for Biomolecules presents the latest on these nanomaterials that have gained a lot of attention based on their unique properties of high mechanical flexibility, large surface area, chemical stability, superior electric and thermal conductivities |
|
|
|
|
|
|
|
|
|
|
that render them great choices as alternative electrode materials for electrochemical energy storage and sensor applications. The hybridization of graphene with other nanomaterials induces a synergetic effect, leading to the improvement in electrical conductivity, stability and an enhancement of the electrocatalytic activity of the new nanocomposite material. This book discusses the electrochemical determination of a variety of biomolecules using graphene-based nanocomposite materials. Finally, recent progress in the development of electrochemical sensors using graphene-based nanocomposite materials and perspectives on future opportunities in sensor research and development are discussed in detail.--Provided by publisher. |
|
|
|
|
|
| |