1.

Record Nr.

UNINA9910583012803321

Titolo

Applications of nanocomposite materials in orthopedics / / edited by Inamuddin, Abdullah M. Asiri, Ali Mohammad

Pubbl/distr/stampa

Duxford, United Kingdom : , : Woodhead Publishing, an imprint of Elsevier, , [2019]

©2019

ISBN

0-12-813757-6

Descrizione fisica

1 online resource (332 pages)

Collana

Woodhead Publishing series in biomaterials

Disciplina

617.3

Soggetti

Orthopedics

Nanocomposites (Materials)

Nanocomposites (Materials) - Therapeutic use

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Front Cover -- Applications of Nanocomposite Materials in Orthopedics -- Copyright -- Contents -- List of contributors -- Preface -- 1: Biodegradable polymer matrix nanocomposites for bone tissue engineering -- 1.1  Introduction -- 1.2  Tissue engineering -- 1.3  Bone tissue engineering -- 1.4  Biodegradable polymers used in the design of nanocomposites for bone tissue engineering -- 1.4.1  Natural biodegradable polymers -- 1.4.1.1  Chitosan -- 1.4.1.2  Alginates -- 1.4.1.3  Starches -- 1.4.1.4  Cellulose -- 1.4.1.5  Collagen -- 1.4.1.6  Gelatin -- 1.4.1.7  Hyaluronic acid (HA) -- 1.4.1.8  Dextran -- 1.4.2  Synthetic biodegradable polymers -- 1.4.2.1  Polylactic acid (PLA) -- 1.4.2.2  Poly(lactic-co-glycolic acid) (PLGA) -- 1.4.2.3  Poly(propylene fumarate) (PPF) -- 1.4.2.4  Poly(ε-caprolactone) (PCL) -- 1.5  Conclusion -- References -- 2: Electrospun hydrogels composites for bone tissue engineering -- 2.1  Introduction -- 2.1.1  General principles of electrospinning -- 2.2  Electrospun nanocomposites for medical applications -- 2.2.1  Electrospun nanocomposite for bone tissues regeneration via osteoconduction, osteoinduction, and osteogenesis -- 2.2.1.1  The effect of osteogenesis and osteoinduction on osteoconductive electrospun scaffolds -- 2.3  Electrospun biomaterials for bone tissue engineering -- 2.3.1  Electrospun



nanofiber-reinforced hydrogels -- 2.3.2  Electrospun hydrogels with biological electrospray cells -- 2.3.3  Electrospun hydrogels with antimicrobial activity -- 2.4  Impact of various parameters on the electrospinning process for nanofiber morphology -- 2.4.1  Polymer solution parameters -- 2.4.2  Processing parameters -- 2.4.3  Ambient parameters -- 2.5  Inventions related to electrospun hydrogels for bone tissue engineering -- 2.6  Future applications of electrospun hydrogels -- 2.7  Conclusion -- References -- Further Reading.

3: Fabrication and applications of hydroxyapatite-based nanocomposites coating for bone tissue engineering -- 3.1  Introduction -- 3.2  Hydroxyapatite: Structure and properties -- 3.3  Conventional orthopedic implants -- 3.3.1  Metallic implants -- 3.3.2  Nonmetallic implants -- 3.4  Composites of hydroxyapatite with ceramics -- 3.4.1  Hydroxyapatite-Al2O3 composites -- 3.4.2  Hydroxyapatite-glass nanocomposites -- 3.4.3  Hydroxyapatite-mullite composites -- 3.4.4  Hydroxyapatite-YSZ nanocomposites -- 3.5  Composites of hydroxyapatite with metals -- 3.5.1  Hydroxyapatite-Pt nanocomposites -- 3.5.2  Hydroxyapatite-Ti nanocomposites -- 3.6  Composites of hydroxyapatite with polymers -- 3.6.1  Hydroxyapatite-epoxy composites -- 3.6.2  Hydroxyapatite-PVA nanocomposites -- 3.6.3  Hydroxyapatite-polyamide nanocomposites -- 3.6.4  Hydroxyapatite-PMMA composites -- 3.6.5  Hydroxyapatite-polylactide composites -- 3.6.6  Hydroxyapatite-PS composites -- 3.6.7  Hydroxyapatite-PE nanocomposites -- 3.6.8  Hydroxyapatite-collagen nanocomposites -- 3.6.9  Hydroxyapatite-PEEK nanocomposites -- 3.7  Conclusion -- References -- 4: Magnesium-based alloys and nanocomposites for biomedical application -- 4.1  Introduction -- 4.2  Magnesium-based biomaterials -- 4.2.1  Why magnesium and magnesium alloys? -- 4.2.2  Corrosion behavior of medical implants -- 4.2.2.1  Magnesium-Corrosion mechanism -- 4.2.3  Current research to overcome the challenges in Mg-based biomaterials -- 4.2.3.1  Corrosion -- 4.2.3.2  Effect of alloying elements on corrosion behavior of Mg materials -- 4.3  Magnesium for cardiovascular application -- 4.3.1  Limitations of bare metal stents and drug eluting stents -- 4.3.2  Biodegradable stents -- 4.3.2.1  Magnesium alloy biodegradable stents -- 4.4  Magnesium for orthopedic application.

4.4.1  Current status of Mg-based materials for orthopedic application -- 4.4.1.1  In vitro testing of Mg-based orthopedic biomaterials -- 4.4.1.2  Preclinical studies of Mg or its alloys for orthopedic application -- 4.5  Magnesium-based nanocomposites -- 4.5.1  Disintegrated melt deposition (DMD) technique -- 4.5.2  Electrochemical behavior of Mg nanocomposites -- 4.5.2.1  Potentiodynamic polarization -- 4.6  Surface modification of Mg alloys -- 4.6.1  Effect of surface modification -- 4.6.1.1  Functional coatings -- 4.6.1.2  Conversion coatings -- 4.6.1.3  Surface coating processes -- 4.7  Future aspects -- References -- 5: Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting -- 5.1  Introduction -- 5.2  Artificial bone grafting -- 5.2.1  Strategies for artificial bone grafting -- 5.3  Carbon nanotube -- 5.4  Multiwalled CNT composite biomaterials for artificial bone grafting -- 5.4.1  Multiwalled CNT-polymer nanocomposite -- 5.4.2  CNT coating on the polymeric surface -- 5.4.3  Multiwalled CNT-collagen nanocomposite -- 5.4.4  Multiwalled CNT-polylactic acid nanocomposite -- 5.4.5  Multiwalled CNT-chitosan nanocomposite -- 5.4.6  Multiwalled CNT-polycaprolactone nanocomposites -- 5.4.7  CNT-HA nanocomposite -- 5.4.8  CNT-bioglass nanocomposite -- 5.5  Challenges and future directions -- 5.6  Conclusions -- Acknowledgments -- References -- 7: Nanocomposite materials for prosthetic devices -- 6.1  Introduction



-- 6.2  Preparation of nanocomposites -- 6.3  Classification of nanocomposites -- 6.3.1  Nonpolymer-based nanocomposites -- 6.3.1.1  Metal-metal nanocomposites -- 6.3.1.2  Metal-ceramic nanocomposites -- 6.3.1.3  Ceramic-ceramic nanocomposites -- 6.3.2  Polymer-based nanocomposites -- 6.4  Application of nanocomposites -- 6.5  Prosthetics -- 6.5.1  Types of prosthetics -- 6.5.2  Limb prosthetics.

6.5.3  Patient course of action -- 6.5.4  Current innovation and assembling -- 6.5.5  Body-controlled arms -- 6.5.6  Lower-extremity prosthetics -- 6.5.6.1  Hands, hips, and knees -- 6.5.6.2  Socket -- 6.5.6.3  Shank and connectors -- 6.5.6.4  Foot -- 6.5.6.5  Knee joint -- 6.5.6.6  Microprocessor control -- 6.5.7  Myoelectric prosthetics -- 6.5.8  Orthopedic prosthetics -- 6.5.9  Robotic prostheses -- 6.6  Conclusion -- References -- 7: Nanocomposites for improved orthopedic and bone tissue engineering applications -- 7.1  Introduction -- 7.2  Biomedical nanocomposites -- 7.3  Nanocomposites in orthopedic drug delivery applications -- 7.4  Nanocomposites in bone tissue engineering applications -- 7.5  Conclusion -- References -- 8: Tailoring surface properties from nanotubes and anodic layers of titanium for biomedical applications -- 8.1  Introduction -- 8.1.1  Film formation by electrochemical process -- 8.1.1.1  Anodic oxidation and plasma electrolytic oxidation (PEO) -- 8.1.2  Nanotube arrays -- 8.2  Commercial applications -- 8.3  Mechanical stability of anodic layers -- 8.4  Conclusions -- References -- 9: Zirconia-alumina composite for orthopedic implant application -- 9.1  Introduction -- 9.1.1  Evolution of ceramic composite hip prostheses -- 9.2  The toughening mechanism in ceramic composite -- 9.2.1  Influence of platelets to inhibit crack propagation -- 9.2.2  Strengthening additives -- 9.3  Fabrication of ceramic composites -- 9.3.1  Densification process -- 9.3.1.1  Pressureless sintering -- 9.3.1.2  Pressure-assisted sintering -- 9.4  Wear of ceramic composite hip prosthesis -- 9.4.1  In vitro wear under standard conditions -- 9.4.2  In vitro wear under adverse conditions -- 9.5  Fracture-an ultimate challenge -- 9.6  Squeaking-a noise or concern -- 9.7  Clinical performance -- 9.8  Conclusions -- 9.9  Future aspects -- References.

10: Nanocomposites in total hip joint replacements -- 10.1  Introduction -- 10.2  Biomaterials and their essential characteristics -- 10.3  Tribological characteristics, the main issue for joint implant materials -- 10.4  Morphology and importance of hip joint replacements -- 10.5  Implantable material systems for THR -- 10.5.1  Metal-on-polymer -- 10.5.2  Metal on metal -- 10.5.3  Ceramic on ceramic -- 10.6  Nanotechnology, the innovative approach -- 10.7  Nanocomposites -- 10.8  Types of NCs used in hip implants -- 10.8.1  Polymer matrix NC -- 10.8.1.1  Ultrahigh molecular weight polyethylene -- 10.8.1.2  UHMWPE-based composites -- 10.8.1.3  Advanced NCs using graphene and nanocarbon reinforcements -- Graphene/UHMWPE NCs -- CNTs/UHMWPE NCs -- 10.8.2  Metal matrix NCs -- 10.8.2.1  Co-Cr based NCs -- 10.8.2.2  Titanium-based NCs -- 10.8.3  Ceramic matrix NCs -- 10.8.3.1  New ceramics NCs with nanocarbon reinforcements -- 10.9  Conclusion -- Acknowledgments -- References -- Further reading -- 11: Chitosan-based nanocomposites for cardiac, liver, and wound healing applications -- 11.1  Introduction -- 11.2  Tissue engineering -- 11.2.1  Chitosan nanocomposites in liver tissue engineering -- 11.2.2  Chitosan nanocomposites in cardiac tissue engineering -- 11.2.3  Chitosan nanocomposite in wound healing applications -- 11.3  Conclusion -- Acknowledgments -- References -- 12: Extracellular matrix: The ideal



natural fibrous nanocomposite products -- 12.1  Introduction -- 12.2  ECM-cell interaction: Cell receptors and biochemical cues -- 12.3  ECM-cell interaction: Cell fate and biophysical cues -- 12.3.1  Stiffness and matrix elasticity -- 12.3.2  Tension and compression -- 12.3.3  Fluid shear stress -- 12.4  Cell perception of biophysical cues from the ECM microenvironment -- 12.4.1  Focal adhesions -- 12.4.2  The cytoskeletal.

12.4.3  The primary cilium.