1.

Record Nr.

UNINA9910574063703321

Titolo

Fostering understanding of complex systems in biology education : pedagogies, guidelines and insights from classroom-based research / / edited by Orit Ben Zvi Assaraf and Marie-Christine P. J. Knippels

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-030-98144-4

Descrizione fisica

1 online resource (283 pages)

Collana

Contributions from Biology Education Research

Disciplina

570.71

Soggetti

Teacher orientation

Educational technology

Biologia de sistemes

Ensenyament de les ciències naturals

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- Chapter 1: Theoretical Perspectives on Complex Systems in Biology Education -- 1.1 Introduction -- 1.2 Systems Dynamics and Systems Thinking -- 1.3 From Structure, Behavior, Function to Phenomena-Mechanisms-Components -- 1.4 Agent-Based Modeling -- 1.5 Thinking in Levels -- 1.6 Conclusion -- References -- Chapter 2: Long Term Ecological Research as a Learning Environment: Evaluating Its Impact in Developing the Understanding of Ecological Systems Thinking - A Case Study -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 The Ecosystem as Complex System -- 2.2.2 The Difficulties Associated with Understanding Complex Ecological Systems -- 2.2.3 Developing and Assessing System Thinking -- 2.3 Methods -- 2.3.1 Setting and Population -- 2.3.2 Research Tools and Data Analysis -- 2.4 Results -- 2.4.1 Analysis Level -- 2.4.2 Synthesis Level -- 2.4.3 Implementation Level -- 2.4.4 Students' Understanding of the Content and the Value of LTER -- 2.5 Discussion -- References -- Chapter 3: Involving Teachers in the Design Process of a Teaching and Learning Trajectory to Foster Students' Systems



Thinking -- 3.1 Introduction -- 3.1.1 Definitions of Systems Thinking -- 3.1.2 Teaching Systems Thinking -- 3.1.3 Focus of the Research -- 3.2 Method -- 3.2.1 Participants -- 3.2.2 LS Meetings -- 3.2.3 Designed Lessons -- 3.2.3.1 Lesson 1 -- 3.2.3.2 Lesson 2 -- 3.2.4 Pre- and Post-interviews -- 3.3 Results -- 3.3.1 RQ1: Contributions of the Teachers -- 3.3.2 RQ2: Learning Experiences -- 3.4 Conclusion -- References -- Chapter 4: Supporting University Student Learning of Complex Systems: An Example of Teaching the Interactive Processes That Constitute Photosynthesis -- 4.1 Introduction -- 4.1.1 What Makes Biological Systems Complex? -- 4.1.2 How Students Learn About Complexity.

4.1.3 How Instruction Can Support Student Learning of Complex Systems -- 4.1.4 Teaching and Learning the Complexity of Photosynthesis -- 4.2 Classroom Context and Methods -- 4.3 Results from Implementation -- 4.4 Conclusions and Implications -- References -- Chapter 5: High School Students' Causal Reasoning and Molecular Mechanistic Reasoning About Gene-Environment Interplay After a Semester-Long Course in Genetics -- 5.1 Introduction -- 5.2 Background of the Study -- 5.3 Aims and Objectives -- 5.4 Method -- 5.4.1 Sample -- 5.4.2 Assessment of Students' Reasoning -- 5.4.3 The Interviews -- 5.4.4 Coding the Students' Responses to the Open-Response Task -- 5.5 Results -- 5.5.1 Findings for the First Question of the Task: What Does the Eye Color of Fruit Flies Depend on? -- 5.5.2 Findings for the Second Question of the Task: Tracing Trait Formation -- 5.5.3 Findings from the Interviews -- 5.6 Discussion and Educational Implications -- References -- Chapter 6: Systems Thinking in Ecological and Physiological Systems and the Role of Representations -- 6.1 Introduction -- 6.2 Similarities and Differences of Complex Systems -- 6.3 Systems Thinking -- 6.4 Representations of Complex Systems -- 6.5 Purpose and Methodology -- 6.6 Systems Thinking in Ecological Contexts -- 6.7 Systems Thinking in Physiological Contexts -- 6.7.1 Process Continuity -- 6.7.2 Self-Regulation -- 6.7.3 Causal-Mechanistic Relations -- 6.8 Discussion -- References -- Chapter 7: The Zoom Map: Explaining Complex Biological Phenomena by Drawing Connections Between and in Levels of Organization -- 7.1 Introduction -- 7.2 What Makes Biological Explanations Complex? The Perspective of Scientists -- 7.2.1 Characteristics of Biological Explanations -- 7.2.2 A Plethora of Biological Levels -- 7.2.3 Organizing the Levels of Biological Organization.

7.2.4 Comparing the Levels of Scientific Disciplines -- 7.3 What Makes Biological Explanations Complex? - The Students' Perspective -- 7.3.1 Students' Difficulties for Explaining Phenomena -- 7.3.2 Zooming in on the Construction of Explanations -- 7.4 Guiding the Process of Explaining with the Zoom Map-The Educators' Perspective -- 7.4.1 Theoretical Learning Principles for Teaching Complex Phenomena -- 7.4.2 The Zoom Map -- 7.5 Design of the Study and Materials -- 7.5.1 The Zoom Map Prepared for a Particular Explanation -- 7.5.2 Experience-Based Conceptions Are Needed to Construct an Explanation -- 7.5.3 External Representations Depict the Mechanism -- 7.5.4 Participants -- 7.5.5 Analysis -- 7.6 Results -- 7.6.1 A Zoom Map to Explain Upright and Wilted Leaves -- 7.6.2 A Zoom Map Demands Exhaustive Editing -- 7.6.3 Learners Drill Down to Lower Levels in Their Explanations -- 7.6.4 Direction of Explanation: Top-Down, Bottom-Up, or yo-yo -- 7.7 Discussion -- 7.8 Implications for Biology Teaching -- References -- Chapter 8: Pre-service Teachers' Conceptual Schemata and System Reasoning About the Carbon Cycle and Climate Change: An Exploratory Study of a Learning Framework for Understanding



Complex Systems -- 8.1 Introduction -- 8.1.1 Knowledge About the Carbon Cycle and Climate Change -- 8.1.2 Climate Change Education -- 8.1.3 Systems Thinking and the Structure-Behavior-Function (SBF) Conceptual Framework -- 8.1.4 Research Objectives -- 8.2 Methods -- 8.2.1 Participants -- 8.2.2 Learning Intervention -- 8.2.2.1 Concept Maps -- 8.2.2.2 Lab Experiments -- 8.2.2.3 Computer Simulations -- 8.2.2.4 Concept Map Revision and Reflections -- 8.2.3 Data Collection and Analysis -- 8.2.3.1 Concept Map Analysis -- 8.2.3.2 Interview Analysis -- 8.3 Results -- 8.3.1 Group A: Slovenian Pre-service Lower-Secondary-School Biology Teachers.

8.3.2 Group B: Cyprus Pre-service Primary School Teachers -- 8.3.3 Group C: Cyprus Pre-service Preschool Teachers -- 8.4 Discussion -- 8.4.1 Educational Implications and Suggestions for Future Research -- References -- Chapter 9: Teaching Students to Grasp Complexity in Biology Education Using a "Body of Evidence" Approach -- 9.1 Introduction -- 9.1.1 What Is a Body of Evidence Approach? -- 9.1.2 A BOE Approach for Middle School Science: Understanding Goals -- 9.2 Research Questions -- 9.3 Methods -- 9.3.1 Design -- 9.3.2 Participants -- 9.3.3 Curriculum -- 9.3.4 BOE Intervention Components -- 9.4 Data Sources and Analysis -- 9.4.1 Concept Maps -- 9.4.2 Post-interviews -- 9.5 Results -- 9.5.1 Concept Maps -- 9.5.2 Interviews -- 9.5.2.1 Confounding Causal Factors with Sources of Evidence -- 9.5.2.2 Expressing the Value of Multiple Possible Explanations/Models -- 9.5.2.3 Recognizing a Collection of Evidence Intended to Support a Claim -- 9.5.2.4 Making Connections to Other Learning about Evidence -- 9.5.2.5 Acknowledging Ecosystems Science Experimentation as Sensitive to Not Harming the Environment -- 9.6 Discussion -- Appendix -- Overview of the Plus BOE Curriculum -- Experimentation Tools in EcoXPT -- EcoXPT Thinking Move Posters Including a Body of Evidence Approach -- Script for Body of Evidence Approach Thinking Move Video -- Body of Evidence Worksheet -- Thinking About Different Types of Evidence Worksheet (Both Classes) -- Supporting Materials for Body of Evidence Thinking Move -- Learning from Opportunistic Experiments -- Discussion Sheet -- Uncertainty and Constructing a Best Explanation -- Discussion Sheet -- References -- Chapter 10: Science Teachers' Construction of Knowledge About Simulations and Population Size Via Performing Inquiry with Simulations of Growing Vs. Descending Levels of Complexity -- 10.1 Introduction -- 10.1.1 Simulations.

10.1.2 Performing a Simulation-Based Scientific Inquiry -- 10.2 The Study and Its Context -- 10.2.1 Participants -- 10.2.2 Data Collection -- 10.2.3 Data Analysis -- 10.2.4 Procedure -- 10.3 What Did we Learn About Teachers' Knowledge and SBSI? -- 10.3.1 Teachers' Knowledge About Simulations and their Function -- 10.3.2 Teachers' Pedagogical Knowledge and Beliefs About Teaching with Simulations -- 10.3.3 Teachers' Knowledge and Understanding of Population Dynamics and Related Representations -- 10.3.4 Science Teachers' Inquiry Performance -- 10.3.5 SBSI Time Duration -- 10.3.6 Inquiry Phases -- 10.3.7 Teachers' Talk About Population Dynamics and SBSI Experiences -- 10.4 Promoting System Thinking through the Use of Simulations - Few Recommendations for a Pedagogy and a Learning Environment As Well As Implications for Instruction and Learning -- References -- Chapter 11: Designing Complex Systems Curricula for High School Biology: A Decade of Work with the BioGraph Project -- 11.1 Developing a Coherent Understanding of Biological Systems -- 11.2 The BioGraph Curriculum and Instruction Framework -- 11.2.1 Curricular Relevance: What Is Being Learned? -- 11.2.2 Cognitively-Rich Pedagogies: How Does Learning Happen? -- 11.2.3 Tools for Teaching



and Learning: What Is Used to Support Instruction and Learning? -- 11.2.4 Content Expertise: What Is the Knowledge to Be Learned? -- 11.3 Designing for Teacher PD -- 11.3.1 Face-to-Face PD: Exploring Teacher Learning and Community Development -- 11.3.2 Online Asynchronous PD: Exploring How to Scale BioGraph Resources -- 11.4 Research Findings -- 11.4.1 Students Improve in Biology and Complex Systems Understanding -- 11.4.2 Students Understanding of Biology as a Coherent Set of Ideas Improves -- 11.4.3 Teachers Indicate High Usability in their Biology Courses -- 11.4.4 Developing Teacher's Social Capital Is Key.

11.5 Benefits of Computer-Supported Complex Systems Curricula and Lessons Learned.