1.

Record Nr.

UNINA990006862130403321

Titolo

POLITICS of climate change : a European perspective / edited by Tim O'Riordan and Jill Jager

Pubbl/distr/stampa

London and New York : Routledge, 1996

Descrizione fisica

XIV, 402 p. ; 24 cm

Collana

Global environmental change series

Disciplina

363.7387

Locazione

FSPBC

Collocazione

VII C 172

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910457235903321

Autore

Rech J (Jean)

Titolo

A case study by Aerospatiale and British Aerospace on the Concorde [[electronic resource] /] / by Jean Rech and Clive S. Leyman

Pubbl/distr/stampa

[Reston, Va., : American Institute of Aeronautics and Astronautics, 1997?]

ISBN

1-60086-812-6

1-60086-811-8

Descrizione fisica

1 online resource (105 p.)

Collana

AIAA professional study series

Altri autori (Persone)

LeymanC. S (Clive S.)

Disciplina

629.133/35/0947

Soggetti

Concorde (Jet transports)

Aerodynamics

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Cover title.

Nota di contenuto

section 1. Introduction -- section 2. Design objectives -- section 3.



Aircraft aerodynamic layout -- section 4. Flying qualities -- section 5. Performance and noise -- section 6. Powerplant aerodynamics.

3.

Record Nr.

UNINA9910574039803321

Titolo

Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems / / edited by Essam Halim Houssein, Mohamed Abd Elaziz, Diego Oliva, Laith Abualigah

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

3-030-99079-6

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (497 pages)

Collana

Studies in Computational Intelligence, , 1860-9503 ; ; 1038

Disciplina

519.3

670.151

Soggetti

Computational intelligence

Machine learning

Computational Intelligence

Machine Learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Combined Optimization Algorithms for Incorporating DG in Distribution Systems -- Intelligent computational models for cancer diagnosis: A Comprehensive Review -- Elitist-Ant System metaheuristic for ITC 2021- Sports Timetabling -- Swarm intelligence algorithms-based Machine Learning Framework for Medical Diagnosis: A Comprehensive Review -- Aggregation of Semantically Similar News Articles with the help of Embedding Techniques and Unsupervised Machine Learning Algorithms: A Machine Learning Application with Semantic Technologies -- Integration of Machine Learning and Optimization Techniques for Cardiac Health Recognition -- Metaheuristics for Parameter Estimation of Solar Photovoltaic Cells: A Comprehensive Review -- Big Data Analysis using Hybrid Meta-heuristic Optimization Algorithm and MapReduce Framework -- Deep Neural Network for Virus Mutation Prediction: A Comprehensive Review -- 2D Target/Anomaly Detection in Time Series Drone Images using Deep



Few-Shot Learning in Small Training Dataset -- Hybrid Adaptive Moth-Flame Optimizer and Opposition-Based Learning for Training Multilayer Perceptrons -- Early Detection of Coronary Artery Disease Using a PSO-based Neuroevolution Model -- Review for meta-heuristic optimization propels machine learning computations execution on spam comment area under digital security aegis region -- Solving reality based optimization trajectory problems with different metaphor inspired metaheuristic algorithms -- Parameter Tuning of PID controller Based on Arithmetic Optimization Algorithm in IOT systems -- Testing and Analysis of Predictive Capabilities of Machine Learning Algorithms -- AI Based Technologies for Digital and Banking Fraud During COVID -19 -- Gradient-Based Optimizer for structural optimization problems -- Aquila Optimizer based PSO Swarm Intelligence for IoT Task Scheduling Application in Cloud Computing.

Sommario/riassunto

This book collects different methodologies that permit metaheuristics and machine learning to solve real-world problems. This book has exciting chapters that employ evolutionary and swarm optimization tools combined with machine learning techniques. The fields of applications are from distribution systems until medical diagnosis, and they are also included different surveys and literature reviews that will enrich the reader. Besides, cutting-edge methods such as neuroevolutionary and IoT implementations are presented in some chapters. In this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and can be used in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the material can be helpful for research from the evolutionary computation, artificial intelligence communities.