|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910568296803321 |
|
|
Autore |
Suzuki Joe |
|
|
Titolo |
Kernel Methods for Machine Learning with Math and RaKernel methods for machine learning with math and R : 100 exercises for building logic / / Joe Suzuki |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Gateway East, Singapore : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9789811903984 |
9789811903977 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (203 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
R (Computer program language) |
Kernel functions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- How to Overcome Your Kernel Weakness -- What Makes KMMR Unique? -- Acknowledgments -- Contents -- 1 Positive Definite Kernels -- 1.1 Positive Definiteness of a Matrix -- 1.2 Kernels -- 1.3 Positive Definite Kernels -- 1.4 Probability -- 1.5 Bochner's Theorem -- 1.6 Kernels for Strings, Trees, and Graphs -- Appendix -- Exercises 1 sim 15 -- 2 Hilbert Spaces -- 2.1 Metric Spaces and Their Completeness -- 2.2 Linear Spaces and Inner Product Spaces -- 2.3 Hilbert Spaces -- 2.4 Projection Theorem -- 2.5 Linear Operators -- 2.6 Compact Operators -- Appendix: Proofs of Propositions -- Exercises -- 3 Reproducing Kernel Hilbert Space -- 3.1 RKHSs -- 3.2 Sobolev Space -- 3.3 Mercer's Theorem -- Appendix -- Exercises -- 4 Kernel Computations -- 4.1 Kernel Ridge Regression -- 4.2 Kernel Principle Component Analysis -- 4.3 Kernel SVM -- 4.4 Spline Curves -- 4.5 Random Fourier Features -- 4.6 Nyström Approximation -- 4.7 Incomplete Cholesky Decomposition -- Appendix -- Exercises 46sim64 -- 5 The MMD and HSIC -- 5.1 Random Variables in RKHSs -- 5.2 The MMD and Two-Sample Problem -- 5.3 The HSIC and Independence Test -- 5.4 Characteristic and Universal Kernels -- 5.5 Introduction to Empirical Processes -- Appendix -- 6 Gaussian Processes and Functional Data Analyses -- 6.1 Regression -- 6.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
Classification -- 6.3 Gaussian Processes with Inducing Variables -- 6.4 Karhunen-Lóeve Expansion -- 6.5 Functional Data Analysis -- Appendix -- Exercises 83sim100 -- Appendix Bibliography. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910792875403321 |
|
|
Titolo |
Reasoning in measurement / / edited by Nicola MÖSSNER and Alfred Nordmann |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London ; ; New York : , : Routledge, , 2017 |
|
|
|
|
|
|
|
ISBN |
|
1-351-96643-X |
1-78144-871-X |
1-351-96644-8 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (275 pages) : illustrations |
|
|
|
|
|
|
Collana |
|
History and Philosophy of Technoscience ; ; 9 |
|
|
|
|
|
|
Altri autori (Persone) |
|
MA?ssnerNicola |
NordmannAlfred <1956-> |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Measurement - History |
Metrology - History |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references at the end of each chapters and index. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
pt. I. Founding figures -- part II. Images as measurements -- part III. Measuring the immeasurable -- part IV. Calibrating mind and world. |
|
|
|
|
|
|
|