1.

Record Nr.

UNICASRML0279785

Autore

Basilius, Caesariensis

Titolo

32: Tou en hagiois patros hemon Basileiou, archiepiskopou Kaisareias Kappadokias, ta euriskomena panta = S. p. n. Basilii, caesareae Cappadociae archiepiscopi, opera omnia quae exstant / opera et studio monachorum ordinis sancti Benedicti e congregatione s. Mauri

Pubbl/distr/stampa

Turnhout, : Brepols, 1984

Descrizione fisica

1562 col. ; 29 cm

Lingua di pubblicazione

Greco antico

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In testa al front.: Saeculum 4.. -Testo latino a fronte. -Rist. anast. dell'ed.: Parisiis : Migne, 1857

2.

Record Nr.

UNINA9910564689303321

Autore

Benedek Csaba

Titolo

Multi-Level Bayesian Models for Environment Perception / / by Csaba Benedek

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

9783030836542

9783030836535

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (208 pages)

Disciplina

006.4

006.37

Soggetti

Statistics

Computer vision

Stochastic processes

Markov processes

Geographic information systems

Bayesian Inference

Computer Vision

Stochastic Processes

Markov Process

Statistical Theory and Methods



Geographical Information System

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction -- Fundamentals. - Bayesian models for Dynamic Scene Analysis -- Multi-layer label fusion models -- Multitemporal data analysis with Marked Point Processes. - Multi-level object population analysis with an EMPP model -- Concluding Remarks -- References -- Index.

Sommario/riassunto

This book deals with selected problems of machine perception, using various 2D and 3D imaging sensors. It proposes several new original methods, and also provides a detailed state-of-the-art overview of existing techniques for automated, multi-level interpretation of the observed static or dynamic environment. To ensure a sound theoretical basis of the new models, the surveys and algorithmic developments are performed in well-established Bayesian frameworks. Low level scene understanding functions are formulated as various image segmentation problems, where the advantages of probabilistic inference techniques such as Markov Random Fields (MRF) or Mixed Markov Models are considered. For the object level scene analysis, the book mainly relies on the literature of Marked Point Process (MPP) approaches, which consider strong geometric and prior interaction constraints in object population modeling. In particular, key developments are introduced in the spatial hierarchical decomposition of the observed scenarios, and in the temporal extension of complex MRF and MPP models. Apart from utilizing conventional optical sensors, case studies are provided on passive radar (ISAR) and Lidar-based Bayesian environment perception tasks. It is shown, via several experiments, that the proposed contributions embedded into a strict mathematical toolkit can significantly improve the results in real world 2D/3D test images and videos, for applications in video surveillance, smart city monitoring, autonomous driving, remote sensing, and optical industrial inspection.